• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Laterais

Limites Laterais

Mensagempor FernandaBS » Sex Mai 25, 2012 18:04

Dada uma função f(x) = arc tg 1/x quando x--> 0, determinar os limites à direita e à esquerda. Não sei como fazer essa questão, alguém pode me ajudar ??
FernandaBS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 25, 2012 10:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites Laterais

Mensagempor Guill » Sex Mai 25, 2012 20:16

Isso deve ser feito analizando o ciclo trigonométrico. Dado o limite:

\lim_{x\rightarrow 0} arctg \left(\frac{1}{x} \right)


Podemos convertê-lo para:

\lim_{a\rightarrow \infty} arctg \left(a) -----> Para valores à direita de x = 0

\lim_{a\rightarrow -\infty} arctg \left(a) -----> Para valores à esquerda de x = 0



Sabendo que a = \frac{1}{x}. Essas determinações surgiram da análize da função g(x) = a = \frac{1}{x}.




Agora fica simples pois, uma vez que sabemos que a tangente tende ao infinito no arco \frac{\pi}{2} e tende ao -infinito no arco \frac{3\pi}{2}=\frac{-\pi}{2}, temos que:

\lim_{x\rightarrow 0^{+}} arctg \left(\frac{1}{x} \right) = \frac{\pi}{2}

\lim_{x\rightarrow 0^{-}} arctg \left(\frac{1}{x} \right) = \frac{-\pi}{2}
Editado pela última vez por Guill em Sáb Mai 26, 2012 15:30, em um total de 3 vezes.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites Laterais

Mensagempor FernandaBS » Sex Mai 25, 2012 20:59

Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá \pi/2 e -\pi/2..
FernandaBS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 25, 2012 10:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites Laterais

Mensagempor Guill » Sáb Mai 26, 2012 15:26

FernandaBS escreveu:Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá e ..



De fato, é a mesma coisa:

\frac{-\pi}{2}= \frac{3\pi}{2}


Vou modificar os valores. Eu cometi um pequeno erro de digitação.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}