• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo - Parametrização

Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:14

Considere o cilindro C = {(x, y, z), x²+y² =2, 0 < z < 2}. Utilizando o teorema de Stokes calcule o ?uxo do campo de vetores F(x, y, z) = (x, y, ?2 z) através de C no sentido da normal exterior.

Se utilizarmos Stokes, obtemos que o rotacional dá zero. Logo a integral seria zero?
Se fizer pelo cálculo do fluxo, temos como parametrização r(\Theta, z)= (\sqrt[2]{2} *cos \Theta, \sqrt[2]{2}sen\Theta, z)

Necessitamos calcular dr/dz X dr/ do?
Está certo isso?
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:24

Com o teorema de Stokes se calcula o fluxo do rotacional de F, não de F. Ainda, o teorema de Stokes expõe uma forma alternativa de calcular trabalho de deslocamento sobre caminhos fechado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:28

Mas então o enunciado está estranho, né?
Pq ele pede pra calcular o fluxo do campo e não do rotacional do campo! Por isso que tentei utilizar calculando diretamente!
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:30

É, ta incoerente com a teoria! Eu acredito que a melhor saída é usar o Teorema da Divergência de Gauss.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:34

Obrigado! Vou fazer aqui! E tem que abrir ainda..pq a superfície não é fechada! Mas obrigado! :D
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:38

Aí depende do problema. O enunciado não dá muita idéia se a superficie é fechada ou não. A meu entendemento, o cilindro é uma superfície fechada. Por isso eu sigeri o Teorema da Divergência. Mas se for só o fluxo através do tronco do cilindro calcula pela definição mesmo de fluxo. (;
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:44

Eu acredito que a superfície seria fechada neste caso se z fosse maior e igual a 0 e menor e igual a 2.
Supondo que não seja fechada, a parametrização que escolhi está certa, né? E na hora de cálcular o produto vetorial é daquele jeito mesmo?
Pq geralmente sobram 2 parametros na parametrização somente! Só que o z só está ligado a terceira coordenada sem relação com as outras duas! =S
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:54

Feliperpr escreveu:Eu acredito que a superfície seria fechada neste caso se z fosse maior e igual a 0 e menor e igual a 2.
Supondo que não seja fechada, a parametrização que escolhi está certa, né? E na hora de cálcular o produto vetorial é daquele jeito mesmo?
Pq geralmente sobram 2 parametros na parametrização somente! Só que o z só está ligado a terceira coordenada sem relação com as outras duas! =S


Supondo a superfície aberta.

Você conhece o teorema a seguir?

\iint_{S}^{}\overrightarrow{F}\cdot \overrightarrow{n}$ dS =\iint_{R}^{} \overrightarrow{F}\cdot(\pm \overrightarrow{\bigtriangledown} \cdot G)dR
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:57

Que eu me lembre não vi nada nesse formato! :/
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 22:00

Comoo você calcularia então o fluxo através do cilindro aberto? Qual fórmula?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 22:04

Desculpa se eu estiver errado...mas tentaria calcular usando a primeira fórmula até antes do igual! Que é a formula geral do fluxo, não? =S
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 22:10

É maais dificil usando a definição! Se você utilizar aquele teorema que eu postei fica mais fácil. Ele consiste em calcular o fluxo através do cilindro aberto usando o fluxo através de uma "sombra" do mesmo, que é o plano R.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 22:18

Vou procurar! Muito obrigado! ;)
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.