• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Funções trigonométricas

[Limite] Funções trigonométricas

Mensagempor Aliocha Karamazov » Qui Out 27, 2011 18:13

Gostaria que alguém me ajudasse nesse limite abaixo, sem usar L'Hospital.

\lim_{x\to\frac{\pi}{2}}\frac{1-sen(x)}{2x-\pi}

Normalmente, eu posto minhas tentativas. Mas o problema aqui foi justamente como começar.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limite] Funções trigonométricas

Mensagempor angieluis » Qui Out 27, 2011 18:58

Começar por fazer a mudança de variavel de y=x-\frac{\pi}{2}.
Ficamos assim com:
lim{\frac{1-sen(y+\frac{\pi}{2})}{2(y+\frac{\pi}{2})\-\pi}, quando   y\rightarrow0
Fazemos então o calculo do numerador, o limite é sempre quando y tende para zero:\lim{\frac{1-cosy}{2y}}
multiplicando em cima e em baixo por 1+cosx fica:
\lim{\frac{1-cos{x}^{2}}{2y(1+cosx)}}=
\lim{\frac{sen{x}^{2}}{2y}}\lim{\frac{1}{cosy}}=
\lim{\frac{seny}{y}\frac{seny}{2}\frac{1}{1+cosy}}=
1x0x1=0
Desculpa a forma como isto está escrito mas é a primeira vez que "ando" aqui!!!
angieluis
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Out 27, 2011 18:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: [Limite] Funções trigonométricas

Mensagempor Aliocha Karamazov » Qui Out 27, 2011 19:43

Obrigado pela ajuda. Quanto à escrita em \LaTeX, dê uma lida no tópico destinado a ele. Eu aprendi tudo por lá!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limite] Funções trigonométricas

Mensagempor LuizAquino » Qui Out 27, 2011 20:19

Vejamos outra maneira.

Faça a substituição u = 2x - \pi .

\lim_{x\to\frac{\pi}{2}}\frac{1-\,\textrm{sen}\,x}{2x-\pi} = \lim_{u\to 0} \frac{1-\,\textrm{sen}\,\left(\frac{u}{2}+\frac{\pi}{2}\right)}{u}

Use a identidade trigonométrica \,\textrm{sen}\,(a+b) = \,\textrm{sen}\,a\cos b + \,\textrm{sen}\,b\cos a.

\lim_{u\to 0} \frac{1-\,\textrm{sen}\,\left(\frac{u}{2}+\frac{\pi}{2}\right)}{u} = \lim_{u\to 0} \frac{1-\cos \frac{u}{2}}{u}

Multiplique o numerador e o denominador por 1+\cos \frac{u}{2} .

\lim_{u\to 0} \frac{\left(1-\cos \frac{u}{2}\right)\cdot \left(1+\cos \frac{u}{2}\right)}{u\cdot \left(1+\cos \frac{u}{2}\right)}

= \lim_{u\to 0} \frac{1-\cos^2 \frac{u}{2}}{u\left(1+\cos \frac{u}{2}\right)}

= \lim_{u\to 0} \frac{\,\textrm{sen}\,^2\frac{u}{2}}{u\left(1+\cos \frac{u}{2}\right)}

= \lim_{u\to 0} \frac{\,\textrm{sen}\,^2\frac{u}{2}}{u\left(1+\cos \frac{u}{2}\right)}

= \left(\lim_{u\to 0} \frac{\,\textrm{sen}\,\frac{u}{2}}{u}\right) \cdot \left(\lim_{u\to 0} \textrm{sen}\,\frac{u}{2} \right) \cdot \left(\lim_{u\to 0} \frac{1}{1+\cos \frac{u}{2}}\right) = 0

Note que no segundo fator aparece um limite cujo o resultado é zero. Portanto no final esse produto é zero.

Mas se ainda assim você quiser continuar a resolução, então é necessário arrumar o primeiro fator para aparecer o limite trigonométrico fundamental. Note que:

\lim_{u\to 0} \frac{\,\textrm{sen}\,\frac{u}{2}}{u} = \lim_{u\to 0} \frac{\,\textrm{sen}\,\frac{u}{2}}{\frac{2u}{2}} = \frac{1}{2} \lim_{u\to 0} \frac{\,\textrm{sen}\,\frac{u}{2}}{\frac{u}{2}}

Fazendo a substituição z = \frac{u}{2}, temos que:

\frac{1}{2} \lim_{u\to 0} \frac{\,\textrm{sen}\,\frac{u}{2}}{\frac{u}{2}} = \frac{1}{2} \lim_{z\to 0} \frac{\,\textrm{sen}\,z}{z} = \frac{1}{2}\cdot 1 = \frac{1}{2}

Voltando para aquele produto, temos que:

\left(\lim_{u\to 0} \frac{\,\textrm{sen}\,\frac{u}{2}}{u}\right) \cdot \left(\lim_{u\to 0} \textrm{sen}\,\frac{u}{2} \right) \cdot \left(\lim_{u\to 0} \frac{1}{1+\cos \frac{u}{2}}\right) = \frac{1}{2} \cdot 0 \cdot \frac{1}{2} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limite] Funções trigonométricas

Mensagempor Aliocha Karamazov » Sex Out 28, 2011 03:27

Obrigado, Luiz.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.