por Aliocha Karamazov » Qui Out 27, 2011 18:13
Gostaria que alguém me ajudasse nesse limite abaixo, sem usar L'Hospital.

Normalmente, eu posto minhas tentativas. Mas o problema aqui foi justamente como começar.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por angieluis » Qui Out 27, 2011 18:58
Começar por fazer a mudança de variavel de

.
Ficamos assim com:

Fazemos então o calculo do numerador, o limite é sempre quando y tende para zero:

multiplicando em cima e em baixo por

fica:

=

=

=

=0
Desculpa a forma como isto está escrito mas é a primeira vez que "ando" aqui!!!
-
angieluis
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Out 27, 2011 18:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: formado
por Aliocha Karamazov » Qui Out 27, 2011 19:43
Obrigado pela ajuda. Quanto à escrita em

, dê uma lida no tópico destinado a ele. Eu aprendi tudo por lá!
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Qui Out 27, 2011 20:19
Vejamos outra maneira.
Faça a substituição

.

Use a identidade trigonométrica

.

Multiplique o numerador e o denominador por

.





Note que no segundo fator aparece um limite cujo o resultado é zero. Portanto no final esse produto é zero.
Mas se ainda assim você quiser continuar a resolução, então é necessário arrumar o primeiro fator para aparecer o limite trigonométrico fundamental. Note que:

Fazendo a substituição

, temos que:

Voltando para aquele produto, temos que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Aliocha Karamazov » Sex Out 28, 2011 03:27
Obrigado, Luiz.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4430 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4181 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1522 Exibições
- Última mensagem por DanielFerreira

Sex Abr 17, 2015 20:32
Funções
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1537 Exibições
- Última mensagem por adauto martins

Seg Abr 20, 2015 20:57
Funções
-
- Limite de funções
por jeremiashenrique » Ter Abr 21, 2015 12:16
- 2 Respostas
- 1584 Exibições
- Última mensagem por jeremiashenrique

Qui Abr 23, 2015 00:18
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.