• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CALCULO] derivada de função composta 2

[CALCULO] derivada de função composta 2

Mensagempor beel » Ter Out 04, 2011 22:58

Derivada de f(x)=x².tg²(x²)

= (x²)'.tg²(x²) + x²(tg²(x²))'
= 2x.tg²(x²) + x².2tg(x²).sec²(x²)


é isso?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [CALCULO] derivada de função composta 2

Mensagempor Neperiano » Qua Out 05, 2011 15:09

Ola

Não seria x^2.2xtg...

Porque o u é x^2 e sua derivada é 2x

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [CALCULO] derivada de função composta 2

Mensagempor LuizAquino » Qua Out 05, 2011 16:56

isanobile escreveu:Derivada de f(x)=x².tg²(x²)

= (x²)'.tg²(x²) + x²(tg²(x²))'
= 2x.tg²(x²) + x².2tg(x²).sec²(x²)


É necessário aplicar a Regra da Cadeia mais de um vez no termo \left[\textrm{tg}\,^2\left(x^2\right)\right]^\prime . Ou seja, temos que:

\left[\,\textrm{tg}\,^2\left(x^2\right)\right]^\prime = 2\,\textrm{tg}\,\left(x^2\right)\left[\textrm{tg}\,\left(x^2\right)\right]^\prime

= 2\,\textrm{tg}\,\left(x^2\right) \sec^2 \left(x^2\right)\left[x^2\right]^\prime

= 4x\,\textrm{tg}\,\left(x^2\right) \sec^2 \left(x^2\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [CALCULO] derivada de função composta 2

Mensagempor beel » Sex Out 07, 2011 20:49

Nao entendi essa ultima derivação...
a derivada de tg²(x²) nao seria apenas
2xtg(x²).tg(x²)' = 2xtg(x²).sec²(x²) ?

na duvida de outro exercicio que postei aqui fiz o contrario, tentei derivar a mais do que deveria,
e nesse, tentei derivar menos.... *-)
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [CALCULO] derivada de função composta 2

Mensagempor LuizAquino » Sáb Out 08, 2011 18:20

isanobile escreveu:Nao entendi essa ultima derivação...
a derivada de tg²(x²) nao seria apenas
2xtg(x²).tg(x²)' = 2xtg(x²).sec²(x²) ?


Não!

Note que você pode escrever as seguintes funções:

(i) f(u) = u^2

(ii) g(v) = \,\textrm{tg}\,v

(iii) h(x) =  x^2

Fazendo a composição dessas funções, note que \textrm{tg}\,^2\left(x^2\right) = f(g(h(x))) .

Portanto, para calcular \left[\textrm{tg}\,^2\left(x^2\right)\right]^\prime precisamos calcular [f(g(h(x)))]^\prime .

Aplicando a regra da cadeia, temos que:

[f(g(h(x)))]^\prime = f^\prime(g(h(x)))[g(h(x))]^\prime = f^\prime(g(h(x)))g^\prime(h(x))h^\prime(x)

Agora faça as substituições e você deve obter \left[\textrm{tg}\,^2\left(x^2\right)\right]^\prime = 4x\,\textrm{tg}\,\left(x^2\right) \sec^2 \left(x^2\right) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [CALCULO] derivada de função composta 2

Mensagempor beel » Qui Out 13, 2011 12:33

Ok, obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59