• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CALCULO] derivada de função composta 2

[CALCULO] derivada de função composta 2

Mensagempor beel » Ter Out 04, 2011 22:58

Derivada de f(x)=x².tg²(x²)

= (x²)'.tg²(x²) + x²(tg²(x²))'
= 2x.tg²(x²) + x².2tg(x²).sec²(x²)


é isso?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [CALCULO] derivada de função composta 2

Mensagempor Neperiano » Qua Out 05, 2011 15:09

Ola

Não seria x^2.2xtg...

Porque o u é x^2 e sua derivada é 2x

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [CALCULO] derivada de função composta 2

Mensagempor LuizAquino » Qua Out 05, 2011 16:56

isanobile escreveu:Derivada de f(x)=x².tg²(x²)

= (x²)'.tg²(x²) + x²(tg²(x²))'
= 2x.tg²(x²) + x².2tg(x²).sec²(x²)


É necessário aplicar a Regra da Cadeia mais de um vez no termo \left[\textrm{tg}\,^2\left(x^2\right)\right]^\prime . Ou seja, temos que:

\left[\,\textrm{tg}\,^2\left(x^2\right)\right]^\prime = 2\,\textrm{tg}\,\left(x^2\right)\left[\textrm{tg}\,\left(x^2\right)\right]^\prime

= 2\,\textrm{tg}\,\left(x^2\right) \sec^2 \left(x^2\right)\left[x^2\right]^\prime

= 4x\,\textrm{tg}\,\left(x^2\right) \sec^2 \left(x^2\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [CALCULO] derivada de função composta 2

Mensagempor beel » Sex Out 07, 2011 20:49

Nao entendi essa ultima derivação...
a derivada de tg²(x²) nao seria apenas
2xtg(x²).tg(x²)' = 2xtg(x²).sec²(x²) ?

na duvida de outro exercicio que postei aqui fiz o contrario, tentei derivar a mais do que deveria,
e nesse, tentei derivar menos.... *-)
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [CALCULO] derivada de função composta 2

Mensagempor LuizAquino » Sáb Out 08, 2011 18:20

isanobile escreveu:Nao entendi essa ultima derivação...
a derivada de tg²(x²) nao seria apenas
2xtg(x²).tg(x²)' = 2xtg(x²).sec²(x²) ?


Não!

Note que você pode escrever as seguintes funções:

(i) f(u) = u^2

(ii) g(v) = \,\textrm{tg}\,v

(iii) h(x) =  x^2

Fazendo a composição dessas funções, note que \textrm{tg}\,^2\left(x^2\right) = f(g(h(x))) .

Portanto, para calcular \left[\textrm{tg}\,^2\left(x^2\right)\right]^\prime precisamos calcular [f(g(h(x)))]^\prime .

Aplicando a regra da cadeia, temos que:

[f(g(h(x)))]^\prime = f^\prime(g(h(x)))[g(h(x))]^\prime = f^\prime(g(h(x)))g^\prime(h(x))h^\prime(x)

Agora faça as substituições e você deve obter \left[\textrm{tg}\,^2\left(x^2\right)\right]^\prime = 4x\,\textrm{tg}\,\left(x^2\right) \sec^2 \left(x^2\right) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [CALCULO] derivada de função composta 2

Mensagempor beel » Qui Out 13, 2011 12:33

Ok, obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D