• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais (problemas de valor inicial)

Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 16:26

Tô com problemas para chegar no resultado dessa integral:

\frac{dv}{dt}=\frac{3}{t \sqrt[]{t²-1}}, t>1, v(2)=0

Integrando cheguei a esse resultado:

\int_{}^{}\frac{dv}{dt}dt=3\int_{}^{}\left(\frac{1}{t\sqrt{t²-1}} \right)
dv=3 arc sec t

No livro, a resposta é dv=3 arc sec t- \pi...

De onde raios saiu esse \pi :?:

e não consegui tirar essa  de dentro da raiz tbm não rsrsrs... Alguem poderia me ajudar???
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integrais (problemas de valor inicial)

Mensagempor MarceloFantini » Sex Set 16, 2011 17:22

Talvez seja da condição inicial, pois na resolução da integral o resultado será v = 3 \textrm{ arcsec } t + K, mas com a condição você encontra o valor de K.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 17:48

A condição inicial é t>1, v(2)=0, substituindo o valor de t do resultado por 2 (e eu sou pessima em arcs), significa então que o resultado de K seria esse:


\kappa=3 arc sec t

\kappa=3 arc sec 2

\kappa=-\frac{3\pi}{3}

\kappa=-\pi

Uma conclusão lógica apenas, não faço a mais minima ideia de pq arc sec 2=-\frac{\pi}{3}...

Alguem aí com uma luz para mim???
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integrais (problemas de valor inicial)

Mensagempor MarceloFantini » Sex Set 16, 2011 18:02

A função \alpha = \textrm{arcsec} t lê-se "o arco cuja secante é t", ou seja, você tem um ângulo \alpha tal que \sec \alpha = t. Vamos ao exercício para facilitar o entendimento: se \alpha = \textrm{arcsec }2 então \sec \alpha = 2, mas \sec \alpha = \frac{1}{\cos \alpha} e daí \frac{1}{\cos \alpha} = 2 \implies \cos \alpha = \frac{1}{2}. O valor de \alpha que satisfaz é \frac{\pi}{3}, e portanto \alpha = \textrm{arcsec }2 = \frac{\pi}{3}. Então, temos v(2) = 0 \implies 3 \textrm{ arcsec }2 +K = 0 \implies K = -3 \textrm{ arcsec }2 = - \pi.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 18:53

Obrigado Fantini vou copiar isso, tô apanhando aqui com as integrais que envolvem os arcos... tenho que dedicar um tempo extra às relações trigonométricas.
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)