por leandro_aur » Sáb Ago 13, 2011 16:14
Galera, bom dia.
Eu não estou conseguindo provar o que pede aqui no livro. Será que alguém poderia dar uma olhada?
(Stewart - Cálculo 2 volume 6 pág 899, Exercício 23)
Se

, mostre que

.
Será que alguém poderia me ajudar?
Abraços
-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
por LuizAquino » Sáb Ago 13, 2011 20:39
Muito provavelmente você está se atrapalhando com as derivadas parciais.
Envie a sua resolução para que possamos identificar o problema.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por leandro_aur » Sáb Ago 13, 2011 20:50
Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
por LuizAquino » Sáb Ago 13, 2011 21:23
leandro_aur escreveu:Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
Não há inconsistência no exercício.
Temos que:


Somando as duas últimas equações:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problemas Quentes do Livro do James Stewart
por ARCS » Dom Fev 12, 2012 00:11
- 1 Respostas
- 3721 Exibições
- Última mensagem por fraol

Dom Fev 12, 2012 10:44
Cálculo: Limites, Derivadas e Integrais
-
- Teorema de Stewart - 2ª Fórmula
por matheus_frs1 » Dom Nov 02, 2014 19:54
- 3 Respostas
- 2671 Exibições
- Última mensagem por Russman

Seg Nov 03, 2014 00:10
Geometria Plana
-
- Possível erro de digitação no Stewart 5ª edição!
por ravi » Sex Jan 18, 2013 03:11
- 2 Respostas
- 3100 Exibições
- Última mensagem por ravi

Sex Jan 18, 2013 13:15
Cálculo: Limites, Derivadas e Integrais
-
- livro de matemática
por DanielFerreira » Sex Mar 26, 2010 12:54
- 1 Respostas
- 3364 Exibições
- Última mensagem por Cleyson007

Sex Mar 26, 2010 17:23
Piadas
-
- PA Livro de Dante
por Joana Gabriela » Seg Ago 09, 2010 10:37
- 1 Respostas
- 3131 Exibições
- Última mensagem por Cleyson007

Seg Ago 09, 2010 14:40
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.