por Cristiano Tavares » Sáb Jun 18, 2011 12:18
Olá a todos,
Tentei resolver a questão que segue abaixo e estou encontrando resultado diferente do gabarito.
Se

é uma função inversa da função f: [0,+

[

R,

, então (

)'0 = 1/e. Verdadeiro ou falso?
Tentei resolver usando o princípio de que a derivada da função inversa é igual ao inverso da derivada da função sem derivar, mas fazendo isso estou encontrando o resultado 1/0, o qual é uma indeterminação.
Desde já agradeço pela atenção dispensada.
-
Cristiano Tavares
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 11, 2011 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
por LuizAquino » Sáb Jun 18, 2011 12:37
Sabemos que
![\left[f^{-1}(x)\right]^\prime = \frac{1}{f^\prime \left(f^{-1}(x)\right)} \left[f^{-1}(x)\right]^\prime = \frac{1}{f^\prime \left(f^{-1}(x)\right)}](/latexrender/pictures/e0a9de7466caa0cd7dddd267f2f6e376.png)
.
Desse modo, siga os passos:
- Calcule
. Digamos que seja k. - Derive a função f.
- Calcule o valor de 1/f'(k).
Para revisar os conceitos de derivada de funções inversas, eu recomendo a
vídeo-aula "15. Cálculo I - Derivada da Função Inversa".
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cristiano Tavares » Sáb Jun 18, 2011 15:07
Luiz Aquino,
Com essas dicas que você deu consegui resolver a questão, muito obrigado. Assisti a sua video aula no Youtube sobre derivada da função inversa, gostei bastante, parabéns pelo seu trabalho de disseminação do conhecimento!
-
Cristiano Tavares
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 11, 2011 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- P.A nao consigo resolver essa p.a.
por Dalila » Sex Nov 14, 2008 16:58
- 2 Respostas
- 3131 Exibições
- Última mensagem por admin

Sex Nov 14, 2008 17:29
Progressões
-
- Não consigo resolver essa integral
por Cristiano Tavares » Qua Mai 11, 2011 22:16
- 2 Respostas
- 2073 Exibições
- Última mensagem por Cristiano Tavares

Qua Mai 11, 2011 23:59
Cálculo: Limites, Derivadas e Integrais
-
- Não consigo calcular essa derivada!!!
por Catalao » Qua Mai 09, 2012 19:51
- 3 Respostas
- 2363 Exibições
- Última mensagem por LuizAquino

Seg Mai 14, 2012 14:55
Cálculo: Limites, Derivadas e Integrais
-
- Quádricas não consigo desenvolver essa questão
por berg_nascimento » Qui Jun 30, 2016 14:58
- 0 Respostas
- 1457 Exibições
- Última mensagem por berg_nascimento

Qui Jun 30, 2016 14:58
Geometria Analítica
-
- [INDUÇÃO | DIVISIBILIDADE] ñ consigo iniciar essa questão
por juliohenriquelima14 » Sáb Dez 13, 2014 19:03
- 3 Respostas
- 3133 Exibições
- Última mensagem por juliohenriquelima14

Sáb Dez 13, 2014 23:27
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.