• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral com exponencial

Integral com exponencial

Mensagempor suziquim » Ter Mai 10, 2011 18:07

Estou com a resolução de duas integrais, mas não entendi o princípio:

\int_{1}^{2}{e}^{x*y}dx
\left[{e}^{x*y} \right]/y

Mas não entendi porque o resultado é o y como denominador.

E a outra:
\int_{0}^{1}{e}^{x/\sqrt[2]{y}}/{y}^{2}
\sqrt[2]{y}*{e}^{x/\sqrt[2]{y}}

Também não entendi a raiz quadrada de y multiplicando com a exponencial

Gostaria que alguém me explicasse o porquê.
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Integral com exponencial

Mensagempor LuizAquino » Ter Mai 10, 2011 18:22

Para entender essas integrais você precisa ter claro qual é a derivada da função f(x) = e^{kx}, com k uma constante real qualquer.

Note que para derivar essa função é necessário aplicar a regra da cadeia. Por exemplo, fazendo h(u) = e^u e g(x)=kx, temos que:
f(x) = h(g(x)) \Rightarrow f'(x) = h'(g(x))g'(x)

Sabemos que h'(u) = e^u. Desse modo, h'(g(x))  = e^{g(x)} = e^{kx} .

Além disso, temos que g'(x)=k.

Portanto, no final temos que:
f'(x) = ke^{kx}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral com exponencial

Mensagempor suziquim » Qua Mai 11, 2011 11:08

Ok, está entendido.
Obrigada! :)
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59