• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aplicações de integrais

Aplicações de integrais

Mensagempor Isla » Qua Fev 23, 2011 12:12

Para calcular o volume de um solido cuja base é o disco{x}^{2}+{y}^{2} \leq4, tal que cada uma de suas seções transversias perpendiculares ao eixo 0x é um semicirculo.

Respondi assim:
volume desse sólido é dado por dV = A.dz, já que altura se expande no eixo Oz. A seção transversal do volume possui raio variável, tal que 0\leq p\leq 4, sendo p o raio.

Com a observação: "tal que cada uma de suas seções transversias perpendiculares ao eixo 0x é um semicirculo", tem se, um duplo cone (acima e abaixo da origem no eixo Oz), só que partido ao meio na linha do eixo Ox.

A área então do círculo partido será pi.p², (repetindo, p é o raio variável), então:

E agora me perdi...Socorro!
Isla
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 23, 2011 00:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Aplicações de integrais

Mensagempor LuizAquino » Qua Fev 23, 2011 17:34

Isla escreveu:Calcular o volume de um sólido cuja base é o disco {x}^{2}+{y}^{2} \leq 4, tal que cada uma de suas seções transversais perpendiculares ao eixo Ox é um semicírculo.


A figura acima ilustra o exercício.
volume-semi-esfera.png
volume-semi-esfera.png (14.38 KiB) Exibido 3240 vezes


Como as seções transversais perpendiculares ao eixo Ox são semicírculos e a base é um círculo, então o sólido é uma semiesfera de raio 2. Sendo assim, já esperamos que o volume seja V = \frac{2\cdot 2^3}{3}\pi = \frac{16}{3}\pi. Vamos confirmar isso aplicando integrais.

Cada semicírculo tem raio y. Notando que o triângulo OAB é retângulo, determinamos que a área de cada semicírculo será dada por A(x) = (4-x^2) \frac{\pi}{2}.

Sendo assim, o volume do sólido será dado por:

V = 2 \int_0^2 A(x) \, dx = \frac{16}{3}\pi
Editado pela última vez por LuizAquino em Qua Fev 23, 2011 21:42, em um total de 2 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Aplicações de integrais

Mensagempor Elcioschin » Qua Fev 23, 2011 20:31

Isla/Luis Aquino

É necessária uma pequena correção nos cálculos:

x² + y² =< 4 ------> R = 2 (e não R = 4) ----> y² = 4 - x²

dV = pi*y²dx -----> V = int[pi*(4 - x²)dx ----> Limite variando de x = 0 até x = 2

V = 4*pi*Int[dx] - pi*Int[x²dx]

V = 4*pi*x - pi*x³/3

Aplicando os limites ----> V = 4*pi*2 - pi*2³/3 ----> V = 8*pi - 8*pi/3 ----> V = 16*pi/3
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Aplicações de integrais

Mensagempor LuizAquino » Qua Fev 23, 2011 21:40

Elcioschin escreveu: É necessária uma pequena correção nos cálculos

Corrigido.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}