• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aplicações de integrais

Aplicações de integrais

Mensagempor Isla » Qua Fev 23, 2011 12:12

Para calcular o volume de um solido cuja base é o disco{x}^{2}+{y}^{2} \leq4, tal que cada uma de suas seções transversias perpendiculares ao eixo 0x é um semicirculo.

Respondi assim:
volume desse sólido é dado por dV = A.dz, já que altura se expande no eixo Oz. A seção transversal do volume possui raio variável, tal que 0\leq p\leq 4, sendo p o raio.

Com a observação: "tal que cada uma de suas seções transversias perpendiculares ao eixo 0x é um semicirculo", tem se, um duplo cone (acima e abaixo da origem no eixo Oz), só que partido ao meio na linha do eixo Ox.

A área então do círculo partido será pi.p², (repetindo, p é o raio variável), então:

E agora me perdi...Socorro!
Isla
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 23, 2011 00:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Aplicações de integrais

Mensagempor LuizAquino » Qua Fev 23, 2011 17:34

Isla escreveu:Calcular o volume de um sólido cuja base é o disco {x}^{2}+{y}^{2} \leq 4, tal que cada uma de suas seções transversais perpendiculares ao eixo Ox é um semicírculo.


A figura acima ilustra o exercício.
volume-semi-esfera.png
volume-semi-esfera.png (14.38 KiB) Exibido 3268 vezes


Como as seções transversais perpendiculares ao eixo Ox são semicírculos e a base é um círculo, então o sólido é uma semiesfera de raio 2. Sendo assim, já esperamos que o volume seja V = \frac{2\cdot 2^3}{3}\pi = \frac{16}{3}\pi. Vamos confirmar isso aplicando integrais.

Cada semicírculo tem raio y. Notando que o triângulo OAB é retângulo, determinamos que a área de cada semicírculo será dada por A(x) = (4-x^2) \frac{\pi}{2}.

Sendo assim, o volume do sólido será dado por:

V = 2 \int_0^2 A(x) \, dx = \frac{16}{3}\pi
Editado pela última vez por LuizAquino em Qua Fev 23, 2011 21:42, em um total de 2 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Aplicações de integrais

Mensagempor Elcioschin » Qua Fev 23, 2011 20:31

Isla/Luis Aquino

É necessária uma pequena correção nos cálculos:

x² + y² =< 4 ------> R = 2 (e não R = 4) ----> y² = 4 - x²

dV = pi*y²dx -----> V = int[pi*(4 - x²)dx ----> Limite variando de x = 0 até x = 2

V = 4*pi*Int[dx] - pi*Int[x²dx]

V = 4*pi*x - pi*x³/3

Aplicando os limites ----> V = 4*pi*2 - pi*2³/3 ----> V = 8*pi - 8*pi/3 ----> V = 16*pi/3
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Aplicações de integrais

Mensagempor LuizAquino » Qua Fev 23, 2011 21:40

Elcioschin escreveu: É necessária uma pequena correção nos cálculos

Corrigido.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)