• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trapézio

Trapézio

Mensagempor Mi_chelle » Qui Mai 19, 2011 01:30

ABCD é um trapézio retângulo. A semicircunferência de diâmetro AD inscrita no trapézio, tangencia BC em um ponto M. Se AB= 4 cm e CD= 9 cm, calcule a área do trapézio.

Naõ consigo imaginar uma meneira de resolver essa questão.
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado

Re: Trapézio

Mensagempor FilipeCaceres » Qui Mai 19, 2011 02:38

trapezio.png
trapezio.png (5.46 KiB) Exibido 2858 vezes


Vê se olhando para o desenho você consegue resolver.

Eu encontrei A_t=13\sqrt{14}\,cm^2

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Trapézio

Mensagempor Mi_chelle » Ter Mai 24, 2011 15:37

Obrigada pela ajuda!!!!
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado

Re: Trapézio

Mensagempor FilipeCaceres » Ter Mai 24, 2011 15:43

Quando você respondeu eu percebi que o meu desenho está errado, o valor correto de MC=9, e com isso não sei que o valor da área que eu lhe passei anteriormente está correto, pois eu não me lembro se quando eu calculei eu usei MC=9 ou se eu fiz conforme está no desenho, mas de qualquer forma para me "redimir" a noite eu postarei a solução.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Trapézio

Mensagempor Mi_chelle » Ter Mai 24, 2011 17:03

Então, eu percebi isso, mas como BM =4, imaginei que MC seria =9. E foi exatamente essa a chave pra a a resolução, vendo a figura e que AB= BM e DC=CM, consegui resolver. A=78cm²
Mais uma vez, obrigada!!
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}