por Mi_chelle » Qui Mai 19, 2011 01:30
ABCD é um trapézio retângulo. A semicircunferência de diâmetro AD inscrita no trapézio, tangencia BC em um ponto M. Se AB= 4 cm e CD= 9 cm, calcule a área do trapézio.
Naõ consigo imaginar uma meneira de resolver essa questão.
-
Mi_chelle
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Seg Mar 28, 2011 17:35
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Química
- Andamento: formado
por FilipeCaceres » Qui Mai 19, 2011 02:38

- trapezio.png (5.46 KiB) Exibido 2858 vezes
Vê se olhando para o desenho você consegue resolver.
Eu encontrei

Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Mi_chelle » Ter Mai 24, 2011 15:37
Obrigada pela ajuda!!!!
-
Mi_chelle
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Seg Mar 28, 2011 17:35
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Química
- Andamento: formado
por FilipeCaceres » Ter Mai 24, 2011 15:43
Quando você respondeu eu percebi que o meu desenho está errado, o valor correto de

, e com isso não sei que o valor da área que eu lhe passei anteriormente está correto, pois eu não me lembro se quando eu calculei eu usei MC=9 ou se eu fiz conforme está no desenho, mas de qualquer forma para me "redimir" a noite eu postarei a solução.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Mi_chelle » Ter Mai 24, 2011 17:03
Então, eu percebi isso, mas como BM =4, imaginei que MC seria =9. E foi exatamente essa a chave pra a a resolução, vendo a figura e que AB= BM e DC=CM, consegui resolver. A=78cm²
Mais uma vez, obrigada!!
-
Mi_chelle
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Seg Mar 28, 2011 17:35
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Química
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Trapézio
por flavio2010 » Sáb Jul 02, 2011 06:05
- 1 Respostas
- 1259 Exibições
- Última mensagem por MarceloFantini

Sáb Jul 02, 2011 18:55
Geometria Plana
-
- Trapézio
por Guilherme Carvalho » Ter Abr 24, 2012 14:40
- 3 Respostas
- 9254 Exibições
- Última mensagem por LuizAquino

Qui Abr 26, 2012 12:01
Geometria Analítica
-
- Trapézio Retângulo
por Fogodc » Qua Abr 07, 2010 19:11
- 0 Respostas
- 1987 Exibições
- Última mensagem por Fogodc

Qua Abr 07, 2010 19:11
Geometria Plana
-
- Área do Trapézio
por Emilia » Qui Fev 03, 2011 14:56
- 1 Respostas
- 2766 Exibições
- Última mensagem por LuizAquino

Qui Fev 03, 2011 16:05
Geometria Plana
-
- Area de um Trapézio
por marcosaajr93 » Qua Fev 23, 2011 16:58
- 1 Respostas
- 1779 Exibições
- Última mensagem por Dan

Qua Fev 23, 2011 17:35
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.