• Anúncio Global
    Respostas
    Exibições
    Última mensagem

relaçoes metricas nos triangulos

relaçoes metricas nos triangulos

Mensagempor stanley tiago » Sáb Fev 12, 2011 19:34

calcule a area de um triangulo retangulo , sabendo que um deuseus catetos mede o triplo do outro e que seu perimetro vale 8+2\sqrt[]{10} unidades


eu nao consegui desenvolver muita coisa desse problema . o q saiu foi isso

c = 3b

A=\frac{b.h}{2}

P=l+l+l

8+2\sqrt[]{10}=3l

socorro!!
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor DanielRJ » Sáb Fev 12, 2011 20:47

stanley tiago escreveu:calcule a area de um triangulo retangulo , sabendo que um deuseus catetos mede o triplo do outro e que seu perimetro vale 8+2\sqrt[]{10} unidades


eu nao consegui desenvolver muita coisa desse problema . o q saiu foi isso

c = 3b

A=\frac{b.h}{2}

P=l+l+l

8+2\sqrt[]{10}=3l

socorro!!


Vamos lá amigo!!!

primeiro perceba que o triangulo é retangulo então traçamos a altura relativa a hipotenusa para podermos usar a relaçao metrica ok? o problema nos dar as seguintes formulas:

Area =\frac{a.h}{2}

(note que a base do triangulo é a Hipotenusa que chamarei de a.)

b.c=a.h ( Produtos dos catetos é igual o produto da hipo pela altura )

a.h=b.3b

a.h=3b^2 ( note que a.h é o denominador da Area)

c = 3b

Perimetro= 8+2\sqrt[]{10}

a+b+c=8+2\sqrt[]{10} ( substituindo )
a+4b=8+2\sqrt[]{10}


agora 2° passo:


a^2=b^2+c^2 ( pitagoras)

a^2=b^2+{(3b)^2}

a^2=b^2+9b^2

a=10b


3° passo:

a+4b=8+2\sqrt[]{10}

10b+4b=8+2\sqrt[]{10}

14b=8+2\sqrt[]{10}

b=\frac{8+2\sqrt[]{10}}{14}

b=\frac{4+\sqrt{10}}{7}



4° passo:

Area =\frac{a.h}{2} ( substituindo a.h=3b^2 )

Area =\frac{3b^2}{2}

Area= \frac {39}{49}

Acho que é isso se não for pelo menos tentei.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: relaçoes metricas nos triangulos

Mensagempor stanley tiago » Dom Fev 13, 2011 16:31

oi amigo obrigado pela tentativa , mais eu acho q vc nao entendeu muito bem .
aqueles dados à baixo foi o que eu interpretei do problema e nao que ele tenha
nos dado no enunciado .
Infelizmente a resposta nao condiz com o gabarito q trás .......... como 6 unidade


obrigado , agardo respostas :y:
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor Neperiano » Dom Fev 13, 2011 16:45

Ola

Eu nem conferi o resultado se da certo, mas acredito que de para resolver assim

Chame um cateto de x
Outro de 3x
Agora descubra a hipotenusa

h^2=x^2+(3x)^2
no final h= x+3x

Agora substitua isso no perimetro

x+3x+x+3x=8+2raiz10

Descubra o x, dai substitua ele no x e 3x, multiplique os dois e divida por dois

Acho que da certo, mas naum tenho certeza

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor stanley tiago » Dom Fev 13, 2011 18:04

a=x+3x ;b=x; c=3x

8x=8+2\sqrt[]{10}

8x-8=2\sqrt[]{10}

(8x-8)^2=(2\sqrt[]{10})^2

64x^2-128x+64=4.10

64x^2-128x+24=0 /(2)

32x^2-64x+12=0

\Delta=-64^2-4.32.12

\Delta=4096-1536

\Delta=\sqrt[]{2560}

\Delta=16\sqrt[]{10}

x'=\frac{4+\sqrt[]{10}}{4}

x"=\frac{4-\sqrt[]{10}}{4}

ola pessoal . eu consegui chegar até aqui mais acredito q nao esta correto, dessa maneira pois nao cheguei ao resultado correto q é de 6 unidade

agardando resposta
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: