• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto vetorial/Norma de um vetor

Produto vetorial/Norma de um vetor

Mensagempor Danilo » Sáb Out 13, 2012 16:03

Ache Y x (\vec{i} + \vec{k}) = 2(\vec{i} + \vec{j} - \vec{k}) e \left|Y \right| = \sqrt[]{6} aqui essa barra representa a Norma de Y, pois eu não encontrei a ''barra dupla''. E ''x'' é o produto vetorial.

Bom, inicialmente eu substitui os vetores canônicos pelas suas respectivas componentes. Mas eu não consigo relacionar a norma com o produto vetorial... esse é o problema. Grato a quem puder dar uma luz!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Produto vetorial/Norma de um vetor

Mensagempor MarceloFantini » Sáb Out 13, 2012 17:05

Seja Y = (a,b,c). Então Y \times (\vec{i} + \vec{k}) = (a,b,c) \times (1,0,1) = (b,-a+c,-b), que por hipótese segue que (b,-a+c,-b) = (2,2,-2).

Assim, c=2+a e b=2, portanto o vetor Y será Y=(a,b,c) = (a,2,2+a).

Agora usamos a informação que |Y| = \sqrt{6}. Sabemos que |Y|^2 = a^2 + 4 +(2+a)^2 = 6, então a^2 +4 +4 -2a +a^2 = 2a^2 +4a +8 = 6, a^2 +2a +4 = 3 e a^2 +2a +1 = (a +1)^2 =0, portanto a=-1.

Finalmente, concluímos que Y = (-1,2,1). Você pode verificar fazendo (-1,2,1) \times (1,0,1).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.