• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Angulo entre retas {vetores}

Angulo entre retas {vetores}

Mensagempor Danilo » Ter Nov 06, 2012 16:07

Obtenha os vértices B e C do triângulo equilátero ABC, sendo A = (1,1,0) e sabendo que o lado BC está contido na reta: (x,y,z) = t(0,1,-1).

Bom, pensei assim: eu já sei o vetor diretor de r, que é (1,1,0). Sei que cada ângulo interno vale 60 graus. Chamei o ponto B de (x,y,z). Como A = (1,1,0) então um vetor diretor da reta uqe passa por AB pode ser (x-1, y-1,z). Logo é só calcular o ângulo entre os vetores diretores usando a definição do produto interno. Mas o problema é que vai dar uma conta astronômica e eu não sei como eliminar as duas variáveis... eu não consigo encontrar uma outra relação tal que eu elimine x e y.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Angulo entre retas {vetores}

Mensagempor young_jedi » Ter Nov 06, 2012 18:54

Danilo

Voce sabe que o B faz parte da reta portanto voce pode dizer que ele é

B=t(0,1,-1)=(0,t,-t)

então o vetor diretor seria

\overrightarrow{AB}=(0-1,t-1,-t-0)=(-1,t-1,-t)

como voce ja bem observou é só utilizar a definição de porduto escalar com o vetor diretor da reta,
vai dar uma conta um pouco grande, mais só com uma variavel, que pode ser isolada e encontrada seu valor,
É possivel que voce vai chegar a dois valores de t, substituindo na equação da reta voce encontra os pontos B e C
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Angulo entre retas {vetores}

Mensagempor Danilo » Qui Nov 08, 2012 02:09

young_jedi escreveu:Danilo

Voce sabe que o B faz parte da reta portanto voce pode dizer que ele é

B=t(0,1,-1)=(0,t,-t)

então o vetor diretor seria

\overrightarrow{AB}=(0-1,t-1,-t-0)=(-1,t-1,-t)

como voce ja bem observou é só utilizar a definição de porduto escalar com o vetor diretor da reta,
vai dar uma conta um pouco grande, mais só com uma variavel, que pode ser isolada e encontrada seu valor,
É possivel que voce vai chegar a dois valores de t, substituindo na equação da reta voce encontra os pontos B e C
1

Bom, eu fiz o produto interno entre o vetor AB = (-1,t-1,-t) e entre um dos vetores diretores da reta que passa por BC = (0,1,-1) e encontrei t=1 mas ao substituir eu não encontro os pontos procurados que são (0,0,0) e o outro (0,0,1)... o que estou errando?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Angulo entre retas {vetores}

Mensagempor young_jedi » Qui Nov 08, 2012 10:20

bom vamos la então

como o angulo entre ele deve ser 60º então nos temos que

|\overtrightarrow{AB}.\overrightarrow{v}|=|\overtrightarrow{AB}||\overrightarrow{v}|cos(60^o)

o vetor diretor é \overrrightarrow{v}=(0,1,-1)


(-1,t-1,-t)(0,1,-1)=\sqrt{(-1)^2+(t-1)^2+(-t)^2}.\sqrt{0+1^2+(-1)^2}.\frac{1}{2}

2t-1=\sqrt{2t^2-2t+2}.\sqrt2.\frac{1}{2}

colocando o dois dentro da raiz em evidencia e tirando pra fora, da para simplicar com a outra raiz de dois e a divisão.

2t-1=\sqrt{t^2-t+1}

elevando os dois lados da equação ao quadrado

4t^2-4t+1=t^2-t+1

3t^2-3t=0

3t(t-1)=0

portanto

t=0

ou

t=1

substituindo

1(0,1,-1)=(0,1,-1)

e

0.(0,1,-1)=(0,0,0)

esses ai são os pontos B e C
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}