por Ovelha » Ter Abr 15, 2014 16:09
Qual o coeficiente de

no desenvolvimento de

-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Ter Abr 15, 2014 23:35
Deixe

em evidencia , teremos
![(1 + x^5 +x^7)^{20} = (1 +[x^5(1 +x^2)])^20 (1 + x^5 +x^7)^{20} = (1 +[x^5(1 +x^2)])^20](/latexrender/pictures/0ad7338f8254c716abb315c1a063622d.png)
.Pelo teorema binomial ,
![1 +[x^5(1 +x^2)])^20= \sum_{k=0}^{20} \binom{20}{k} [x^5(1+x^2)]^k = \sum_{k=0}^{20} \binom{20}{k} x^{5k}(1+x^2)^k = 1 + \binom{20}{1}x^5(1+x^2 ) + \binom{20}{2}x^{10}(1+x^2)^2 + \binom{20}{3}x^{15}(1 +x^2)^3 + \sum_{k=4}^{20} \binom{20}{k} [x^5(1+x^2)]^k 1 +[x^5(1 +x^2)])^20= \sum_{k=0}^{20} \binom{20}{k} [x^5(1+x^2)]^k = \sum_{k=0}^{20} \binom{20}{k} x^{5k}(1+x^2)^k = 1 + \binom{20}{1}x^5(1+x^2 ) + \binom{20}{2}x^{10}(1+x^2)^2 + \binom{20}{3}x^{15}(1 +x^2)^3 + \sum_{k=4}^{20} \binom{20}{k} [x^5(1+x^2)]^k](/latexrender/pictures/6b190677aa82f28ec474211533c54f62.png)
.
O termo

é oriundo da 4 parcela

. Basta desenvolver para encontrar o coefc.
Observe que nas parcelas ,

, o grau de x será sempre menor que

quando

(afinal de contas

) e maior que

quando

(afinal de contas

) .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Abr 16, 2014 08:24
valeu pela ajuda, tô novo no assunto vou tentar desenvolver e se tiver problemas vou pedir sua ajuda, tudo bem?
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Abr 16, 2014 10:19
Tranquilo , qualquer dúvida só dizer .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Abr 16, 2014 13:16
Olá, tudo bem. Comecei a fazer agora não estou conseguindo passar da combinação, estou tendo problemas no desenvolvimento,não consigo visualizar como desenvolver.
Desculpe pelo aluguel
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Abr 16, 2014 15:23
OK . :
Temos

e

. O único termo que nos interessa é

, pois

. Então o coefc. é

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qui Abr 17, 2014 15:05
Valeu Santhiago, contudo eu estava olhando e descobri que as possiveis respostas da questão colocads como opção foram:
a) 0
b)3000
c)1210
d)3420
e)4000
Continuo contando com sua ajuda
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qui Abr 17, 2014 17:42
Perdão ! Na correria acabei digitando errado . Vamos lá , sabemos que o termo da forma

vem da expressão

. Ao desenvolvermos

precisaremos de

. Pois , produto de números de mesma base conserva a base e soma os expoentes . Logo o coef. será

. Agora vamos determinar

.
Vamos utilizar o teorema binomial (será + rápido !!!)

. Precisamos apenas de

. Assim , o nosso

é 3 , logo a resposta será

. Por favor , agora check a resposta .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qui Abr 17, 2014 21:02
Muito obrigado, se você tiver um bom material de binômio estilo ita com questões resolvidas e comentadas. Aceito receber o link ou pdf para estudo,
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qui Abr 17, 2014 22:07
De nada . Conheço um site que pode ser útil para vc :
http://www.rumoaoita.com/site/
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Sáb Abr 19, 2014 13:48
Valeu pela dica. Agora desejo sabaer uma duvida. Ao escrever "Ao desenvolvermos

" na resposta os termos dentro doparenteses é elevado a 2 ou 3.
Obrigado
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Sáb Abr 19, 2014 14:00
OMG , pensei certo e escrevi errado de novo .
O certo é ao desenvolvermos

... . As potências de (x^2) serão sempre 0,1,2,3 . Todos naturais menores que 3 , Ou ainda , As potências de x serão 0,2,4,6 .
Lembre-se que ao desenvolver

cada parcela será da forma

com

. Portanto , as potências de

são naturais variando de zero até n .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Sáb Abr 19, 2014 14:09
Muito obrigADOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
DEUS ABENÇOE
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Binômio de Newton
por Giordane Junior » Sex Dez 03, 2010 00:46
- 0 Respostas
- 7898 Exibições
- Última mensagem por Giordane Junior

Sex Dez 03, 2010 00:46
Binômio de Newton
-
- (PUC-PR)BINOMIO DE NEWTON
por natanskt » Seg Dez 06, 2010 10:54
- 1 Respostas
- 7154 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 11:54
Binômio de Newton
-
- Binômio de Newton
por natanskt » Seg Dez 06, 2010 12:07
- 1 Respostas
- 8547 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 14:07
Binômio de Newton
-
- Binomio de Newton.
por 380625 » Sex Mar 11, 2011 12:57
- 1 Respostas
- 2837 Exibições
- Última mensagem por MarceloFantini

Sex Mar 11, 2011 16:20
Binômio de Newton
-
- Binomio de newton
por Fabricio dalla » Sex Abr 01, 2011 01:13
- 8 Respostas
- 8008 Exibições
- Última mensagem por LuizAquino

Sáb Jul 23, 2011 19:12
Binômio de Newton
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.