• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas de exame

Problemas de exame

Mensagempor alexpt » Sex Jul 09, 2010 08:40

Ola, estou a estudar para o exame da segunda fase de mat e preciso de ajuda com alguns exercícios.

Uma caixa contem 2 bolas pretas, uma bola verde e n bolas amarelas. Considere a seguinte experiência: ao acaso, retiram-se simultaneamente duas bolas da caixa.

Sabendo que a probabilidade de uma ser amarela e a outra verde é de 5/39, determine o valor de n.

Eles resolvem o exercício usando esta equação n/(1+n)combinações de 2 = 5/39 e o resultado da 10. Eu não entendo como é que eles chegaram à equação.
alexpt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 09, 2010 08:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problemas de exame

Mensagempor Tom » Sex Jul 09, 2010 09:39

Começaremos com o cálculo da probabilidade de se retirar, simultaneamente, uma bola amarela e uma bola verde.

Por definição, a probabilidade pode ser entendida como: \dfrac{\text{numeros de casos que contribuem para o evento}}{\text{numero de todos os casos possiveis}}

Ora, o evento RETIRAR UMA BOLA AMARELA E UMA BOLA VERDE pode acontecer das seguintes formas:

Uma das bolas retiradas sempre é verde, e como só existe uma bola verde na caixa, então basta contar o número de bolas amarelas. Nesse caso estamos usando o conceito de combinação, já que não existe a relação de ordem, pois as bolas são retiradas simultaneamente.

Concluímos, portanto que: \text{numeros de casos que contribuem para o evento}=n


Agora devemos contar de quantas maneiras distintas duas bolas podem ser retiradas: Como existem n+3 bolas, uma retirada corresponde a uma combinação de duas bolas. Assim, o número de retiradas corresponde ao número de combinações de n+3 bolas tomadas 2 a 2, isto é:

\binom{n+3}{2}=\dfrac{(n+3)(n+2)}{2}


Por fim, a probabilidade de se retirar uma bola amarela e uma bola verde será: \dfrac{n}{\frac{(n+3)(n+2)}{2}}

Com efeito, fazemos:

\dfrac{2n}{(n+3)(n+2)}=\dfrac{5}{39} que é uma equação do segundo grau em n, cuja raiz natural é n=10 , de fato.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Problemas de exame

Mensagempor alexpt » Sex Jul 09, 2010 10:31

Tom escreveu:Começaremos com o cálculo da probabilidade de se retirar, simultaneamente, uma bola amarela e uma bola verde.

Por definição, a probabilidade pode ser entendida como: \dfrac{\text{numeros de casos que contribuem para o evento}}{\text{numero de todos os casos possiveis}}

Ora, o evento RETIRAR UMA BOLA AMARELA E UMA BOLA VERDE pode acontecer das seguintes formas:

Uma das bolas retiradas sempre é verde, e como só existe uma bola verde na caixa, então basta contar o número de bolas amarelas. Nesse caso estamos usando o conceito de combinação, já que não existe a relação de ordem, pois as bolas são retiradas simultaneamente.

Concluímos, portanto que: \text{numeros de casos que contribuem para o evento}=n


Agora devemos contar de quantas maneiras distintas duas bolas podem ser retiradas: Como existem n+3 bolas, uma retirada corresponde a uma combinação de duas bolas. Assim, o número de retiradas corresponde ao número de combinações de n+3 bolas tomadas 2 a 2, isto é:

\binom{n+3}{2}=\dfrac{(n+3)(n+2)}{2}


Por fim, a probabilidade de se retirar uma bola amarela e uma bola verde será: \dfrac{n}{\frac{(n+3)(n+2)}{2}}

Com efeito, fazemos:

\dfrac{2n}{(n+3)(n+2)}=\dfrac{5}{39} que é uma equação do segundo grau em n, cuja raiz natural é n=10 , de fato.


Adoro-te :)

Obrigado pela explicação. Acho que o que me confundiu no inicio foi a bola verde que contribui para o evento não estar representada mas agora percebi porque.
alexpt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 09, 2010 08:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}