• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas de exame

Problemas de exame

Mensagempor alexpt » Sex Jul 09, 2010 08:40

Ola, estou a estudar para o exame da segunda fase de mat e preciso de ajuda com alguns exercícios.

Uma caixa contem 2 bolas pretas, uma bola verde e n bolas amarelas. Considere a seguinte experiência: ao acaso, retiram-se simultaneamente duas bolas da caixa.

Sabendo que a probabilidade de uma ser amarela e a outra verde é de 5/39, determine o valor de n.

Eles resolvem o exercício usando esta equação n/(1+n)combinações de 2 = 5/39 e o resultado da 10. Eu não entendo como é que eles chegaram à equação.
alexpt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 09, 2010 08:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problemas de exame

Mensagempor Tom » Sex Jul 09, 2010 09:39

Começaremos com o cálculo da probabilidade de se retirar, simultaneamente, uma bola amarela e uma bola verde.

Por definição, a probabilidade pode ser entendida como: \dfrac{\text{numeros de casos que contribuem para o evento}}{\text{numero de todos os casos possiveis}}

Ora, o evento RETIRAR UMA BOLA AMARELA E UMA BOLA VERDE pode acontecer das seguintes formas:

Uma das bolas retiradas sempre é verde, e como só existe uma bola verde na caixa, então basta contar o número de bolas amarelas. Nesse caso estamos usando o conceito de combinação, já que não existe a relação de ordem, pois as bolas são retiradas simultaneamente.

Concluímos, portanto que: \text{numeros de casos que contribuem para o evento}=n


Agora devemos contar de quantas maneiras distintas duas bolas podem ser retiradas: Como existem n+3 bolas, uma retirada corresponde a uma combinação de duas bolas. Assim, o número de retiradas corresponde ao número de combinações de n+3 bolas tomadas 2 a 2, isto é:

\binom{n+3}{2}=\dfrac{(n+3)(n+2)}{2}


Por fim, a probabilidade de se retirar uma bola amarela e uma bola verde será: \dfrac{n}{\frac{(n+3)(n+2)}{2}}

Com efeito, fazemos:

\dfrac{2n}{(n+3)(n+2)}=\dfrac{5}{39} que é uma equação do segundo grau em n, cuja raiz natural é n=10 , de fato.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Problemas de exame

Mensagempor alexpt » Sex Jul 09, 2010 10:31

Tom escreveu:Começaremos com o cálculo da probabilidade de se retirar, simultaneamente, uma bola amarela e uma bola verde.

Por definição, a probabilidade pode ser entendida como: \dfrac{\text{numeros de casos que contribuem para o evento}}{\text{numero de todos os casos possiveis}}

Ora, o evento RETIRAR UMA BOLA AMARELA E UMA BOLA VERDE pode acontecer das seguintes formas:

Uma das bolas retiradas sempre é verde, e como só existe uma bola verde na caixa, então basta contar o número de bolas amarelas. Nesse caso estamos usando o conceito de combinação, já que não existe a relação de ordem, pois as bolas são retiradas simultaneamente.

Concluímos, portanto que: \text{numeros de casos que contribuem para o evento}=n


Agora devemos contar de quantas maneiras distintas duas bolas podem ser retiradas: Como existem n+3 bolas, uma retirada corresponde a uma combinação de duas bolas. Assim, o número de retiradas corresponde ao número de combinações de n+3 bolas tomadas 2 a 2, isto é:

\binom{n+3}{2}=\dfrac{(n+3)(n+2)}{2}


Por fim, a probabilidade de se retirar uma bola amarela e uma bola verde será: \dfrac{n}{\frac{(n+3)(n+2)}{2}}

Com efeito, fazemos:

\dfrac{2n}{(n+3)(n+2)}=\dfrac{5}{39} que é uma equação do segundo grau em n, cuja raiz natural é n=10 , de fato.


Adoro-te :)

Obrigado pela explicação. Acho que o que me confundiu no inicio foi a bola verde que contribui para o evento não estar representada mas agora percebi porque.
alexpt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 09, 2010 08:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59