• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas de exame

Problemas de exame

Mensagempor alexpt » Sex Jul 09, 2010 08:40

Ola, estou a estudar para o exame da segunda fase de mat e preciso de ajuda com alguns exercícios.

Uma caixa contem 2 bolas pretas, uma bola verde e n bolas amarelas. Considere a seguinte experiência: ao acaso, retiram-se simultaneamente duas bolas da caixa.

Sabendo que a probabilidade de uma ser amarela e a outra verde é de 5/39, determine o valor de n.

Eles resolvem o exercício usando esta equação n/(1+n)combinações de 2 = 5/39 e o resultado da 10. Eu não entendo como é que eles chegaram à equação.
alexpt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 09, 2010 08:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problemas de exame

Mensagempor Tom » Sex Jul 09, 2010 09:39

Começaremos com o cálculo da probabilidade de se retirar, simultaneamente, uma bola amarela e uma bola verde.

Por definição, a probabilidade pode ser entendida como: \dfrac{\text{numeros de casos que contribuem para o evento}}{\text{numero de todos os casos possiveis}}

Ora, o evento RETIRAR UMA BOLA AMARELA E UMA BOLA VERDE pode acontecer das seguintes formas:

Uma das bolas retiradas sempre é verde, e como só existe uma bola verde na caixa, então basta contar o número de bolas amarelas. Nesse caso estamos usando o conceito de combinação, já que não existe a relação de ordem, pois as bolas são retiradas simultaneamente.

Concluímos, portanto que: \text{numeros de casos que contribuem para o evento}=n


Agora devemos contar de quantas maneiras distintas duas bolas podem ser retiradas: Como existem n+3 bolas, uma retirada corresponde a uma combinação de duas bolas. Assim, o número de retiradas corresponde ao número de combinações de n+3 bolas tomadas 2 a 2, isto é:

\binom{n+3}{2}=\dfrac{(n+3)(n+2)}{2}


Por fim, a probabilidade de se retirar uma bola amarela e uma bola verde será: \dfrac{n}{\frac{(n+3)(n+2)}{2}}

Com efeito, fazemos:

\dfrac{2n}{(n+3)(n+2)}=\dfrac{5}{39} que é uma equação do segundo grau em n, cuja raiz natural é n=10 , de fato.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Problemas de exame

Mensagempor alexpt » Sex Jul 09, 2010 10:31

Tom escreveu:Começaremos com o cálculo da probabilidade de se retirar, simultaneamente, uma bola amarela e uma bola verde.

Por definição, a probabilidade pode ser entendida como: \dfrac{\text{numeros de casos que contribuem para o evento}}{\text{numero de todos os casos possiveis}}

Ora, o evento RETIRAR UMA BOLA AMARELA E UMA BOLA VERDE pode acontecer das seguintes formas:

Uma das bolas retiradas sempre é verde, e como só existe uma bola verde na caixa, então basta contar o número de bolas amarelas. Nesse caso estamos usando o conceito de combinação, já que não existe a relação de ordem, pois as bolas são retiradas simultaneamente.

Concluímos, portanto que: \text{numeros de casos que contribuem para o evento}=n


Agora devemos contar de quantas maneiras distintas duas bolas podem ser retiradas: Como existem n+3 bolas, uma retirada corresponde a uma combinação de duas bolas. Assim, o número de retiradas corresponde ao número de combinações de n+3 bolas tomadas 2 a 2, isto é:

\binom{n+3}{2}=\dfrac{(n+3)(n+2)}{2}


Por fim, a probabilidade de se retirar uma bola amarela e uma bola verde será: \dfrac{n}{\frac{(n+3)(n+2)}{2}}

Com efeito, fazemos:

\dfrac{2n}{(n+3)(n+2)}=\dfrac{5}{39} que é uma equação do segundo grau em n, cuja raiz natural é n=10 , de fato.


Adoro-te :)

Obrigado pela explicação. Acho que o que me confundiu no inicio foi a bola verde que contribui para o evento não estar representada mas agora percebi porque.
alexpt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 09, 2010 08:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: