• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da Fuvest

Questão da Fuvest

Mensagempor my2009 » Qua Mar 30, 2011 10:00

Seja n um número inteiro, n\geq 0.

a) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Luís e Antônio.

b) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Pedro,Luís e Antônio.

Por favor, quem for resolver me explique o porquê do ( n+1) .... que foi o q eu não entendi..

Obrigada !
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da Fuvest

Mensagempor FilipeCaceres » Qua Mar 30, 2011 10:31

Oi My,
Procure por número de soluções inteiras e não negativas de uma equação linear para obter mais informações e aprender como se resolve esses tipos de questões.
Ex.:
Considere a equação linear a seguir:
x_1 + x_2 + ... + x_n = p, ondep\epsilon  N (N = conjunto dos números naturais).

C_p^{n+p-1} = \frac{(n+p-1)!}{p!.(n-1)!}


Voltando para a questão.
A) Seja x o número de bolas recebidas por Luís e y o número de bolas recebidas por Antônio. Do enunciado temos a equação x + y = n.
Logo temos,

C_n^{2+n-1} =C_n^{n+1} =\frac{(n+1)!}{n!.(n+1-n)!}=\frac{(n+1)!}{n!}
C_n^{n+1} =\frac{(n+1)!}{n!}=\frac{(n+1).n!}{n!}=n+1

C_n^{n+1} = n+1

B)Sendo z o número de bolas recebidas por Pedro, temos a equação x + y + z = n.
Use o mesmo raciocínio anterior e tente fazer esta, qualquer dúvida pergunte.

Espero ter ajudado.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Questão da Fuvest

Mensagempor my2009 » Qua Mar 30, 2011 10:38

Olá Felipe, tudo bem com vc?
Então.. ainda não entendi... pq ( n+1 ) ?

aqui na resolução Ele utiliza P ao invés de C .... poderia tmb utlizar a permutação para resolver essa questão ?
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da Fuvest

Mensagempor my2009 » Qua Mar 30, 2011 10:40

rsrsrsrs ha ta ja entendi... =p :oops: obrigada
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da Fuvest

Mensagempor FilipeCaceres » Qua Mar 30, 2011 11:18

Que bom que você entendeu, mas só para complementar, poderia ser utilizado permutação sem problema nenhum, observe que:
C_n^{2+n-1} =C_n^{n+1} =\frac{(n+1)!}{n!}=P_{n+1}^n

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?