• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Bolas Brancas e Amarelas (e Pretas!!!)

Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor gustavowelp » Sex Nov 19, 2010 09:02

Bom dia.

Não sei nem como começar esta questão...

A primeira probabilidade já me confundiu... Ainda tem a segunda!

Uma urna contém 2 bolas brancas e 3 bolas amarelas distinguíveis apenas pela cor. Aleatoriamente, duas bolas serão escolhidas, sucessivamente e sem reposição, e colocadas em uma segunda urna, na qual há apenas uma bola preta também distinta das demais apenas pela cor. Após a transferência das duas bolas para a segunda urna, escolher-se-á, aleatoriamente, uma única bola dessa urna. Qual a probabilidade de que, nesse último sorteio, a bola escolhida seja amarela?

A resposta correta é: 0,40

Agradeço desde já!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor alexandre32100 » Sex Nov 19, 2010 12:46

Escolhemos duas bolas dentre as cinco: \dbinom{5}{2}=10 maneiras.
Daí formulamos as seguintes probabilidades:
  • Escolher duas bolas brancas: \dfrac{1}{10}=0,1
  • Escolher duas bolas amarelas*: \dfrac{3}{10}=0,3
  • Escolher uma bola de cada cor: 1-0,1-0,3=0,6
* esse número 3 é resultado da escolha de duas bolas dentre as três amarelas existentes na urna, \dbinom{3}{2}=3.

Se escolhermos duas amarelas na 1ª urna, a chance de retirar uma amarela na 2ª urna é de \dfrac{2}{3}, assim temos uma probabilidade de \dfrac{\not3}{10}\times\dfrac{2}{\not3}=\dfrac{2}{10}=0,2.
Agora, se na primeira urna escolhermos uma bola de cada cor, a possibilidade é de apenas \dfrac{1}{3} na segunda, ou ainda, \dfrac{6}{10}\times\dfrac{1}{3}=0,2.
Por fim, chegamos ao resultado 0,2+0,2=0,4.
alexandre32100
 

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor gustavowelp » Sex Nov 19, 2010 13:04

Não entendi o teu primeiro argumento \left(\frac{5}{2} \right) ...
Seria combinação, certo?

Mas 1/10 quer dizer que somente há uma forma de retirar bolas brancas?

Obrigado!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:25

gustavowelp escreveu:Não entendi o teu primeiro argumento \left(\frac{5}{2} \right) ...
Seria combinação, certo?

Exato!
Eu uso a notação \dbinom{n}{k}, mas isto é o mesmo que C_n^k ou C_{n,k}.
Neste caso não fiz nada mais do que "escolher dois elementos dentre cinco", ou seja, combinação de cinco elementos tomados dois a dois.
gustavowelp escreveu:Mas 1/10 quer dizer que somente há uma forma de retirar bolas brancas?

Sim. Há duas bolas brancas na urna, ou seja, minha única forma de retirar duas bolas brancas é escolher estas únicas, ou ainda, \dbinom{2}{2}=1, diferente do caso das bolas amarelas (A_1, A_2 e A_3), onde eu posso formar três pares: \{A_1,A_2\},\{A_1,A_3\},\{A_2,A_3\}.
alexandre32100
 

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor gustavowelp » Sex Nov 19, 2010 13:34

A dúvida que tenho é que as bolas brancas (ou amarelas) poderiam ser retiradas como Arranjo, ou seja, tirar a bola B1, B2 ou B2, B1. Da mesma forma para as amarelas.
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:46

O que importa neste caso são quais bolas você vai por na segunda urna, "a ordem não importa", portanto temos uma combinação.
alexandre32100
 


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.