por gustavowelp » Sex Nov 19, 2010 09:02
Bom dia.
Não sei nem como começar esta questão...
A primeira probabilidade já me confundiu... Ainda tem a segunda!
Uma urna contém 2 bolas brancas e 3 bolas amarelas distinguíveis apenas pela cor. Aleatoriamente, duas bolas serão escolhidas, sucessivamente e sem reposição, e colocadas em uma segunda urna, na qual há apenas uma bola preta também distinta das demais apenas pela cor. Após a transferência das duas bolas para a segunda urna, escolher-se-á, aleatoriamente, uma única bola dessa urna. Qual a probabilidade de que, nesse último sorteio, a bola escolhida seja amarela?
A resposta correta é: 0,40
Agradeço desde já!!!
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por alexandre32100 » Sex Nov 19, 2010 12:46
Escolhemos duas bolas dentre as cinco:

maneiras.
Daí formulamos as seguintes probabilidades:
- Escolher duas bolas brancas:

- Escolher duas bolas amarelas*:

- Escolher uma bola de cada cor:

* esse número

é resultado da escolha de duas bolas dentre as três amarelas existentes na urna,

.
Se escolhermos duas amarelas na 1ª urna, a chance de retirar uma amarela na 2ª urna é de

, assim temos uma probabilidade de

.
Agora, se na primeira urna escolhermos uma bola de cada cor, a possibilidade é de apenas

na segunda, ou ainda,

.
Por fim, chegamos ao resultado

.
-
alexandre32100
-
por gustavowelp » Sex Nov 19, 2010 13:04
Não entendi o teu primeiro argumento

...
Seria combinação, certo?
Mas 1/10 quer dizer que somente há uma forma de retirar bolas brancas?
Obrigado!!!
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por alexandre32100 » Sex Nov 19, 2010 13:25
gustavowelp escreveu:Não entendi o teu primeiro argumento

...
Seria combinação, certo?
Exato!
Eu uso a notação

, mas isto é o mesmo que

ou

.
Neste caso não fiz nada mais do que "escolher dois elementos dentre cinco", ou seja, combinação de cinco elementos tomados dois a dois.
gustavowelp escreveu:Mas 1/10 quer dizer que somente há uma forma de retirar bolas brancas?
Sim. Há duas bolas brancas na urna, ou seja, minha única forma de retirar duas bolas brancas é escolher estas únicas, ou ainda,

, diferente do caso das bolas amarelas (

,

e

), onde eu posso formar três pares:

.
-
alexandre32100
-
por gustavowelp » Sex Nov 19, 2010 13:34
A dúvida que tenho é que as bolas brancas (ou amarelas) poderiam ser retiradas como Arranjo, ou seja, tirar a bola B1, B2 ou B2, B1. Da mesma forma para as amarelas.
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por alexandre32100 » Sex Nov 19, 2010 13:46
O que importa neste caso são quais bolas você vai por na segunda urna, "a ordem não importa", portanto temos uma combinação.
-
alexandre32100
-
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- n urnas, x bolas brancas e y bolas pretas...Qstão interessan
por marcosmuscul » Seg Out 28, 2013 17:40
- 0 Respostas
- 1458 Exibições
- Última mensagem por marcosmuscul

Seg Out 28, 2013 17:40
Estatística
-
- Probabilidade - Bolas pretas e brancas
por gustavowelp » Sáb Jun 26, 2010 11:08
- 1 Respostas
- 1371 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 26, 2010 11:42
Estatística
-
- Probabilidade - Bolas
por Cleyson007 » Qui Set 22, 2011 12:23
- 3 Respostas
- 2262 Exibições
- Última mensagem por Neperiano

Qui Set 22, 2011 16:21
Estatística
-
- [Probabilidade] Bolas
por Lidstew » Qua Abr 10, 2013 21:40
- 1 Respostas
- 1716 Exibições
- Última mensagem por Rafael16

Qua Abr 10, 2013 22:19
Probabilidade
-
- Análise Combinatória - Bolas em caixas
por angeruzzi » Dom Mai 16, 2010 01:33
- 5 Respostas
- 7440 Exibições
- Última mensagem por Douglasm

Ter Jun 08, 2010 09:33
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.