• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Bolas Brancas e Amarelas (e Pretas!!!)

Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor gustavowelp » Sex Nov 19, 2010 09:02

Bom dia.

Não sei nem como começar esta questão...

A primeira probabilidade já me confundiu... Ainda tem a segunda!

Uma urna contém 2 bolas brancas e 3 bolas amarelas distinguíveis apenas pela cor. Aleatoriamente, duas bolas serão escolhidas, sucessivamente e sem reposição, e colocadas em uma segunda urna, na qual há apenas uma bola preta também distinta das demais apenas pela cor. Após a transferência das duas bolas para a segunda urna, escolher-se-á, aleatoriamente, uma única bola dessa urna. Qual a probabilidade de que, nesse último sorteio, a bola escolhida seja amarela?

A resposta correta é: 0,40

Agradeço desde já!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor alexandre32100 » Sex Nov 19, 2010 12:46

Escolhemos duas bolas dentre as cinco: \dbinom{5}{2}=10 maneiras.
Daí formulamos as seguintes probabilidades:
  • Escolher duas bolas brancas: \dfrac{1}{10}=0,1
  • Escolher duas bolas amarelas*: \dfrac{3}{10}=0,3
  • Escolher uma bola de cada cor: 1-0,1-0,3=0,6
* esse número 3 é resultado da escolha de duas bolas dentre as três amarelas existentes na urna, \dbinom{3}{2}=3.

Se escolhermos duas amarelas na 1ª urna, a chance de retirar uma amarela na 2ª urna é de \dfrac{2}{3}, assim temos uma probabilidade de \dfrac{\not3}{10}\times\dfrac{2}{\not3}=\dfrac{2}{10}=0,2.
Agora, se na primeira urna escolhermos uma bola de cada cor, a possibilidade é de apenas \dfrac{1}{3} na segunda, ou ainda, \dfrac{6}{10}\times\dfrac{1}{3}=0,2.
Por fim, chegamos ao resultado 0,2+0,2=0,4.
alexandre32100
 

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor gustavowelp » Sex Nov 19, 2010 13:04

Não entendi o teu primeiro argumento \left(\frac{5}{2} \right) ...
Seria combinação, certo?

Mas 1/10 quer dizer que somente há uma forma de retirar bolas brancas?

Obrigado!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:25

gustavowelp escreveu:Não entendi o teu primeiro argumento \left(\frac{5}{2} \right) ...
Seria combinação, certo?

Exato!
Eu uso a notação \dbinom{n}{k}, mas isto é o mesmo que C_n^k ou C_{n,k}.
Neste caso não fiz nada mais do que "escolher dois elementos dentre cinco", ou seja, combinação de cinco elementos tomados dois a dois.
gustavowelp escreveu:Mas 1/10 quer dizer que somente há uma forma de retirar bolas brancas?

Sim. Há duas bolas brancas na urna, ou seja, minha única forma de retirar duas bolas brancas é escolher estas únicas, ou ainda, \dbinom{2}{2}=1, diferente do caso das bolas amarelas (A_1, A_2 e A_3), onde eu posso formar três pares: \{A_1,A_2\},\{A_1,A_3\},\{A_2,A_3\}.
alexandre32100
 

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor gustavowelp » Sex Nov 19, 2010 13:34

A dúvida que tenho é que as bolas brancas (ou amarelas) poderiam ser retiradas como Arranjo, ou seja, tirar a bola B1, B2 ou B2, B1. Da mesma forma para as amarelas.
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bolas Brancas e Amarelas (e Pretas!!!)

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:46

O que importa neste caso são quais bolas você vai por na segunda urna, "a ordem não importa", portanto temos uma combinação.
alexandre32100
 


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.