por Aprendiz2012 » Sáb Ago 11, 2012 21:36
Tah, entendí que um sistema possível e indeterminado é um que apresenta infinitas soluções, pois, tais soluções serão as mesmas que as das equações lineares contidas nele.. só que não tenho idéia de como fazer para chegar a alguma resposta para este problema em específico.
Calcule k tal que
{x=2
{x+2y=8
{3x-2y+kz=0
a)seja um sistema possível e indeterminado;
b)seja um sistema possível e deerminado.
cheguei a y=3, mas não consegui sair disso..
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
por MarceloFantini » Sáb Ago 11, 2012 22:28
Se

e

, então

. Isto tem solução para qualquer

, pois se

, é óbvio. Se

, então

e tem solução novamente.
A questão é que se

então existe apenas uma solução, logo determinado, e se

existem infinitas, portanto indeterminado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Aprendiz2012 » Sáb Ago 11, 2012 23:09
então, deixa eu ver se eu entendí..
se k= 0 o z pode assumir infinitos valores..
e se k for diferente de 0 o z assumirá somente o valor de 0
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
por MarceloFantini » Sáb Ago 11, 2012 23:16
Sim. Você consegue explicar o porque?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Aprendiz2012 » Sáb Ago 11, 2012 23:25
não.. tah meio vago na minha cabeça..
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
por MarceloFantini » Sáb Ago 11, 2012 23:33
Procure explorar exemplos nos dois casos. Se

, tomemos

. Então

, de onde segue que

, pois é produto de dois números que é nulo. Como um dos fatores é não-nulo, o outro deve ser. Se

, então

, de onde segue que

. Lembre-se sempre que a solução é a tripla

, onde

.
Agora, se

então teremos

. Como um dos fatores já é zero, isso significa que

pode ser qualquer número real. Suponha

, então

; suponha agora que

. Então

, é solução também. Note que já achamos

e

como soluções. Podemos seguir indefinidamente, para qualquer valor real de

, então as soluções são da forma

, onde

é qualquer número real.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Aprendiz2012 » Sáb Ago 11, 2012 23:40
vlw mesmo ajudou mto.. parabéns.
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [sistema linear homogeneo] Como resolver esse sistema
por amigao » Qua Jul 02, 2014 14:49
- 1 Respostas
- 2963 Exibições
- Última mensagem por Russman

Qua Jul 02, 2014 18:38
Álgebra Linear
-
- [Sistema linear] Sistema linear com constante
por smlspirit » Qui Jul 19, 2012 19:34
- 4 Respostas
- 5326 Exibições
- Última mensagem por Russman

Qui Jul 19, 2012 22:40
Sistemas de Equações
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4348 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- Sistema linear
por kael » Ter Out 20, 2009 14:14
- 1 Respostas
- 2574 Exibições
- Última mensagem por kael

Ter Out 20, 2009 16:24
Sistemas de Equações
-
- Sistema Linear
por kael » Qua Out 21, 2009 13:43
- 1 Respostas
- 3538 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2009 15:26
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.