• Anúncio Global
    Respostas
    Exibições
    Última mensagem

sistemas lineares

sistemas lineares

Mensagempor Abner » Sex Mai 20, 2011 17:36

.resolva o sistema de equações lineares

(8 -5 2 ) ( x ) 0

3 -1 1 . y = 0

1 2 1 z 0

e discuta o significado geometrico se existir
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: sistemas lineares

Mensagempor Molina » Sex Mai 20, 2011 19:08

Boa tarde, Abner.

Procure utilizar a linguagem LaTeX para postar expressões matemáticas.

Confirme se é isso:
\begin{pmatrix}
   8 & -5 & 2  \\ 
   3 & -1 & 1  \\
   1 & 2 & 1
\end{pmatrix}*
\begin{pmatrix}
   x \\ 
   y  \\
   z
\end{pmatrix}=
\begin{pmatrix}
   0 \\ 
   0  \\
   0
\end{pmatrix}


Fico no aguardo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: sistemas lineares

Mensagempor lanca » Sáb Mai 21, 2011 15:26

Oi Abner...

Fiz por escalonamento mas ainda não consegui entender a forma geométrica
lanca
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Mai 15, 2011 00:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: sistemas lineares

Mensagempor lanca » Sáb Mai 21, 2011 15:27

Oi Molina!!

A expressão é essa mesma.
lanca
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Mai 15, 2011 00:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: sistemas lineares

Mensagempor Abner » Sáb Mai 21, 2011 16:25

Molina desculpe não saber usar o Latex mas é isso mesmo....
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: sistemas lineares

Mensagempor lanca » Sáb Mai 21, 2011 20:10

Oi Abner...
Fiz por escalonamento e cheguei nesse resultado,ve se confere com o seu..

y=-2z/7 e x= -1z/14

fiz em função de z
lanca
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Mai 15, 2011 00:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: sistemas lineares

Mensagempor lanca » Sáb Mai 21, 2011 22:54

Oi Abner...

Refiz meus cálculos...por escalonamento vamos ter;

y= -2z/7 e x= -3z/7

Estou concluindo a forma algébrica
lanca
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Mai 15, 2011 00:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: sistemas lineares

Mensagempor LuizAquino » Dom Mai 22, 2011 19:10

Exercício já resolvido na mensagem:
Re: Sistema linear por matriz
viewtopic.php?p=16213#p16213
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}