• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como calcular determinantes de ordem elevada

como calcular determinantes de ordem elevada

Mensagempor marcos chaves » Seg Set 03, 2012 18:18

quero saber se existem teoremas etc para se calcular determinantes de ordem 1000 ou mais
marcos chaves
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Fev 25, 2012 16:50
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em matematica
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor MarceloFantini » Seg Set 03, 2012 18:24

Existe a expansão de Laplace para calcular determinantes de matrizes n \times n para qualquer n \in \mathbb{N}. Dê uma olhada aqui e aqui.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor marcos chaves » Seg Set 03, 2012 18:40

MarceloFantini escreveu:Existe a expansão de Laplace para calcular determinantes de matrizes n \times n para qualquer n \in \mathbb{N}. Dê uma olhada aqui e aqui.

Para resolver determinante de ordem 1000, por Laplace ,pode ser que eu necessite de um milhao de anos , que eu justamente agora não disponho
marcos chaves
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Fev 25, 2012 16:50
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em matematica
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor MarceloFantini » Seg Set 03, 2012 18:44

Se você olhou no segundo link que enviei, veria que eles citam como exemplos os métodos de decomposição LU, decomposição QR e decomposição Cholesky.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor LuizAquino » Seg Set 03, 2012 22:36

marcos chaves escreveu:quero saber se existem teoremas etc para se calcular determinantes de ordem 1000 ou mais


Um método simples é transformar a matriz original em uma outra que tenha o mesmo determinante, mas que seja triangular superior ou inferior.

Eu recomendo que você assista o final da parte 3 e a parte 4 da videoaula "Matemática - Aula 20 - Determinantes". Elas estão disponíveis no canal do Nerckie no YouTube:

http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)