• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes Nivel fácil

Determinantes Nivel fácil

Mensagempor DanielRJ » Ter Mai 03, 2011 21:23

127- Se A é uma matriz quadrada de ordem 2, inversivel, e det(A) o seu determinante. Se det(2.A)=det(A^2)então det(A) será igual a:

a)0
b)1
c)1\2
d)4

Por hoje é só.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes Nivel fácil

Mensagempor FilipeCaceres » Ter Mai 03, 2011 22:05

Sabendo que:
det(kA)=k^n.detA, para matriz A de ordem n.

Questão:
det(2.A)=det(A^2)

Para uma matriz A_{2x2}
det(2A)= 2^2 .detA

Logo,
2^2.detA=det(A^2)

4=detA^2.detA^{-1}

det(A.A.A^{-1})=4

Como,
A.A^{-1}=I
det(I)=1

Temos,
det(A.A.A^{-1})=4
det(A.I)=4

Portanto,
det A=4

Espero que seja isso.
Editado pela última vez por FilipeCaceres em Qui Mai 05, 2011 21:48, em um total de 2 vezes.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Determinantes Nivel fácil

Mensagempor DanielRJ » Qua Mai 04, 2011 10:23

Pow mesma propriedade denovo valeu ae.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes Nivel fácil

Mensagempor DanielRJ » Qui Mai 05, 2011 20:05

Filipe só me explica uma coisa de onde surguiu o det A^{-1} ?? desde já obrigado!
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes Nivel fácil

Mensagempor FilipeCaceres » Qui Mai 05, 2011 20:47

Você quer saber nesta passagem
2^2.detA=det(A^2)
4=detA^2.detA^{-1}


Observe o que eu fiz,
2^2.detA=det(A^2)
2^2=\frac{det A^2}{detA}
4=detA^2.detA^{-1}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Determinantes Nivel fácil

Mensagempor DanielRJ » Qui Mai 05, 2011 21:27

o detalhe é como que\frac{Det A^{2}}{DetA} = Det A.DetA^{-1}
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes Nivel fácil

Mensagempor FilipeCaceres » Qui Mai 05, 2011 21:41

Sabendo que
A.A^{-1}=I
det(I) = 1

Temos,
det(A.A^{-1}) = 1

det A.det A^{-1} = 1

detA^{-1} =\frac{1}{det A}

Como temos,
2^2.detA=det A^2

Então,
4=\frac{1}{detA}.det A^2

Portanto,
4=det A^{-1}.det A^2

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Determinantes Nivel fácil

Mensagempor DanielRJ » Qui Mai 05, 2011 22:17

Obrigado pela paciencia em explicar! :y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)