• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBABILIDADE TANGRAN

PROBABILIDADE TANGRAN

Mensagempor vania a » Sáb Out 15, 2011 09:16

VI uma resposta em outro site, porem nao entendi, gostaria de ajuda!!
http://www.uploadimagens.com/upload/bc3 ... 3d8aef.jpg
A figura acima ilustra um TANGRAN, quebra-cabeças com-
posto por 7 peças que podem ser posicionadas de maneira
a formar um quadrado. Suas peças são:

- 2 triângulos grandes idênticos;
- 1 triângulo médio;
- 2 triângulos pequenos idênticos;
- 1 quadrado e
- 1 paralelogramo.

Essas peças foram numeradas de 1 a 7 como ilustrado na
figura abaixo.

http://www.uploadimagens.com/upload/1cb ... 886b5a.jpg

Sorteiam-se simultaneamente, de maneira aleatória, duas
dessas peças pelo número. Sabendo-se que todas as pe-
ças têm a mesma probabilidade de serem sorteadas, a pro-
babilidade de que a soma das áreas das peças escolhidas
seja MAIOR do que a quarta parte da área do Tangran com-
pleto é:

(A) 12/21
(B) 11/21
(C) 10/21
(D) 9/21
(E) 8/21

RESPOSTA b
vania a
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Set 07, 2011 16:13
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: formado

Re: PROBABILIDADE TANGRAN

Mensagempor Molina » Sáb Out 15, 2011 14:51

Boa tarde.

Suas imagens foram expiradas já.

Coloque a imagem diretamente daqui, através da aba "adicionar um anexo", logo abaixo da caixa de escrever suas postagens.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: PROBABILIDADE TANGRAN

Mensagempor vania a » Dom Out 16, 2011 07:50

Nao foi possivel copiar a figura, anexei a prova, é a questão nr 20.
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

vania a
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Set 07, 2011 16:13
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.