• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão sobre triângulo incentro

Questão sobre triângulo incentro

Mensagempor LuizCarlos » Dom Abr 01, 2012 19:00

Estou tentando resolver uma questão, mas o resultado que obtive, não é a mesma da resposta do livro!

Na figura, I é o incentro do triângulo ABC. Sabendo que BÎC = 8x e x = Â, determine x.

Triângulo_incentro.png
Triângulo_incentro.png (3.19 KiB) Exibido 7250 vezes



Tentei resolver dessa forma!

Observando a bissetriz B1 com a bissetriz C1, forma um angulo reto, de 90 graus. Então fiz os cálculos abaixo:


Triângulo_incentro2.png
Triângulo_incentro2.png (3.53 KiB) Exibido 7250 vezes




90 + 8x = 180

8x = 180 - 90

8x = 90

x = \frac{90}{8}

x = 11 graus e 15 minutos

Mas a resposta no livro é x = 12 graus.

Não estou entendendo.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Questão sobre triângulo incentro

Mensagempor Pedro123 » Dom Abr 01, 2012 19:30

Bom cara, o problema todo da questão, é que você nao pode afirmar com certeza que o angulo entre a bissetriz e o lado do triângulo é exatamente 90º, so se pode afirmar isso se o triângulo for equilátero ou isósceles (apenas no lado que é diferente dos 2).
Mas vamos à resolução.

Considerando o triângulo ABC, temos a condição angular :

X + B + C = 180 --> B + C = 180 - X . Porém, no triangulo BCI:

8X + B/2 + C/2 = 180 --> 16x + B + C = 360.

substituindo uma na outra :

16x + 180 - x = 360

15 x = 180

x = 12º.

qualquer duvida estamos ai
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: Questão sobre triângulo incentro

Mensagempor NMiguel » Dom Abr 01, 2012 19:46

LuizCarlos escreveu:Tentei resolver dessa forma!

Observando a bissetriz B1 com a bissetriz C1, forma um angulo reto, de 90 graus. Então fiz os cálculos abaixo:

90 + 8x = 180

8x = 180 - 90

8x = 90

x = \frac{90}{8}

x = 11 graus e 15 minutos

Mas a resposta no livro é x = 12 graus.

Não estou entendendo.


O teu erro neste raciocínio foi supores que o ângulo formado pelas duas bissetrizes é reto. Isso não acontece. Daí teres obtido um resultado errado.
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Questão sobre triângulo incentro

Mensagempor LuizCarlos » Dom Abr 01, 2012 20:48

Pedro123 escreveu:Bom cara, o problema todo da questão, é que você nao pode afirmar com certeza que o angulo entre a bissetriz e o lado do triângulo é exatamente 90º, so se pode afirmar isso se o triângulo for equilátero ou isósceles (apenas no lado que é diferente dos 2).
Mas vamos à resolução.

Considerando o triângulo ABC, temos a condição angular :

X + B + C = 180 --> B + C = 180 - X . Porém, no triangulo BCI:

8X + B/2 + C/2 = 180 --> 16x + B + C = 360.

substituindo uma na outra :

16x + 180 - x = 360

15 x = 180

x = 12º.

qualquer duvida estamos ai



Obrigado Pedro123, entendi agora, vacilei feio!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Questão sobre triângulo incentro

Mensagempor LuizCarlos » Dom Abr 01, 2012 20:49

NMiguel escreveu:
LuizCarlos escreveu:Tentei resolver dessa forma!

Observando a bissetriz B1 com a bissetriz C1, forma um angulo reto, de 90 graus. Então fiz os cálculos abaixo:

90 + 8x = 180

8x = 180 - 90

8x = 90

x = \frac{90}{8}

x = 11 graus e 15 minutos

Mas a resposta no livro é x = 12 graus.

Não estou entendendo.


O teu erro neste raciocínio foi supores que o ângulo formado pelas duas bissetrizes é reto. Isso não acontece. Daí teres obtido um resultado errado.


È verdade NMiguel, vacilei! mas agora entendi.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}