• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de soluções da equação

Soma de soluções da equação

Mensagempor Pri Ferreira » Qui Nov 03, 2011 22:41

Tentei utilizar algumas identidades trigonómetricas, caí numa equação do 2º grau, mas isso não me ajudou, podem me dar outro caminho, para obter a resposta?? Obrigada.
No intervalo [0° , 360°], a soma das soluções da equação cosx. sen²x + sen²x = (cosx + 1) / 4 é:
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Soma de soluções da equação

Mensagempor Aliocha Karamazov » Qui Nov 03, 2011 23:49

Coloque sen^2(x) em evidência:

cos(x)sen^2(x) + sen^2(x) = \frac{cos(x) + 1)}{4} \Rightarrow sen^2(x)[cos(x)+1]= \frac{cos(x) + 1)}{4}

Já sabe o que fazer agora...
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Soma de soluções da equação

Mensagempor fernandocez » Sex Mai 03, 2013 18:00

Aproveitando a questão.

Encontrei a solução em um site mas tá muito resumido:

sen x = + - \sqrt[]{\frac{1}{4}} = + - \frac{1}{2}} ----- s ={30°,150°,210°,330°}
ou
cos x + 1 = 0 = cos x = - 1 ------ s = {180°}

Estou com dúvida como chegou em cos x + 1 = 0 ??
já tentei desenvolver a expressão de várias maneiras e não chego em cos x + 1 = 0
Agradeço quem puder ajudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)