• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Lei dos Senos] aplicação em um triângulo qualquer...Dúvida!

[Lei dos Senos] aplicação em um triângulo qualquer...Dúvida!

Mensagempor TOPO_PAIM » Sex Ago 17, 2012 01:45

Dado um triângulo qualquer, com suas dimensões: b=529,42; c=946,72 e ângulo B=33º03'56". Calcular os restantes dos ângulos internos (A e C) e o valor do lado a.
questao_prova_matematica.jpg
Questão a ser resolvida


Tentei aplicar a lei dos senos: \frac{a}{senA}=\frac{b}{senB}=\frac{c}{senC} e a lei dos cossenos: a² =b² +c² -2.b.c.cosA para descobrir a distancia do lado a.


Ja que possuo 2 lados e 1 ângulo, a formula cabível seria a lei dos cossenos que ficaria assim: b²=a²+c²-2.a.c.cosB


529,42²=a²+946,72²-2.a.946,72.cos33º03'56"


Mas não foi possível o calculo.

E para calculo de ângulos é aplicável a formula: A=ArcCos\left(\frac{ab² +ac² -bc²}{2.ab.ac}\right)


Acredito que o enunciado da questão informe algum dos elementos errado.
Vejo que para esse calculo ser possível eu deveria saber 2 lados do triangulo e o angulo que é dado pela vértice formada por esses dois lados, nessa questão seria o angulo A,mostrado na figura, e não o B, que é o existente.


Espero ajuda, muito obrigado.
TOPO_PAIM
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 16, 2012 23:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informatica
Andamento: formado

Re: [Lei dos Senos] aplicação em um triângulo qualquer...Dúv

Mensagempor Russman » Sex Ago 17, 2012 01:59

O seu problema é determinar a terceira medida de um triângulo sabendo apenas duas medidas e um ângulo interno.

Suponhamos que os lados b e c do triângulo sejam conhecidos, bem como o angulo interno B oposto ao lado de medida b. Assim, do Teorema dos Cossenos, temos

b^2 = a^2 + c^2 - 2ac.cos(B)

Como os valores b, c e cos(B) são conhecido você fica com uma equação de 2° grau em a bem simples de resolver!

Quanto aos outros ângulos: Lembre-se que A+B+C = 180. Assim, como B é conhecido basta determinarmos ou A ou C que o restante fica explicito!

Optarei por deteminar A. Uma maneira é usar novamente o TeoremaDosCossenos:

a^2 = b^2 + c^2 - 2bc.cos(A)

de onde você pode facilmente isolar A uma vez que a,b e c são conhecidos!.

Calculado o valor de A, basta tomar C= 180 - B - A e seu problema esta solucionado!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Lei dos Senos] aplicação em um triângulo qualquer...Dúv

Mensagempor TOPO_PAIM » Sex Ago 17, 2012 12:34

Russman escreveu:O seu problema é determinar a terceira medida de um triângulo sabendo apenas duas medidas e um ângulo interno.

Suponhamos que os lados b e c do triângulo sejam conhecidos, bem como o angulo interno B oposto ao lado de medida b. Assim, do Teorema dos Cossenos, temos

b^2 = a^2 + c^2 - 2ac.cos(B)

Como os valores b, c e cos(B) são conhecido você fica com uma equação de 2° grau em a bem simples de resolver!

Quanto aos outros ângulos: Lembre-se que A+B+C = 180. Assim, como B é conhecido basta determinarmos ou A ou C que o restante fica explicito!

Optarei por deteminar A. Uma maneira é usar novamente o TeoremaDosCossenos:

a^2 = b^2 + c^2 - 2bc.cos(A)

de onde você pode facilmente isolar A uma vez que a,b e c são conhecidos!.

Calculado o valor de A, basta tomar C= 180 - B - A e seu problema esta solucionado!


Caro amigo Russman, obrigado pela ajuda. Mas mesmo assim estou com dificuldade no desenvolvimento e na aplicação do teorema dos cossenos para descobrir o valor do lado "a"! Seria possível você mostrar desenvolvimento para mim?
Enquanto aos a resultados dos ângulos esta tranquilo.
Muito Obrigado
TOPO_PAIM
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 16, 2012 23:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informatica
Andamento: formado

Re: [Lei dos Senos] aplicação em um triângulo qualquer...Dúv

Mensagempor Russman » Sex Ago 17, 2012 16:12

Sim.

Uma equação de 2° grau geral é da forma ax^2+bx+c=0 e, como você bem deve saber, a solução se apresenta como x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}.

Observe que reescrevendo a equação de forma que

b^2=a^2+c^2-2ac.cos(B)\Rightarrow a^2+(-2c.cos(B))a +(c^2-b^2)=0

temos , comparando com a forma geral da equação de 2° grau,

\left\{\begin{matrix}
x\rightarrow a\\ 
a\rightarrow 1\\ 
b\rightarrow -2c.cos(B)\\ 
c\rightarrow c^2-b^2
\end{matrix}\right.

Ajudou?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)