• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Tentei resolver mas acho q não deu certo - ajudem.

Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor Jhennyfer » Dom Ago 18, 2013 11:49

Oi pessoas...
boom a questão é a seguinte:

(UEPB) - Em 1614, o escocês John Napier (1550-1617) criou a ferramenta de calculo mais "afiada" que procedeu a invenção dos computadores, o logaritmo. Se Log _{32}m=k, então Log _{2}\sqrt[5]{m} vale:

Bom tentei começando reduzindo o 32 a base 2...

32^k = m
2^5^k = m
5k = m

e agora vem o meu problema (eu acho)...

2=\sqrt[5]{m}
2^5^k=m^\frac{1}{5}
5k=\frac{1}{5}
k=1

Gabarito k...
esse calculo tá certo???
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor e8group » Dom Ago 18, 2013 12:52

As duas primeiras linhas de seu desenvolvimento estão corretas ,as demais etapas estão erradas.Como encontrou 5k = m ? .


Note que 32^k = m  \iff 2^{5k} = m \iff (2^k)^5 =m \iff 2^k = \sqrt[5]{m} . Aplicando o logaritmo de base 2 em ambos lados da igualdade obtém-se o que se pede no enunciado .De outra forma ,poderia começar "brincando " de multiplicar log_{32}(m) por 5/5 =1 .veja a equivalência :


log_{32}(m) = 1 \cdot log_{32}(m) = \frac{5}{5} \cdot log_{32}(m) = 5 (\frac{1}{5} log_{32}(m)) = 5 log_{32}(m^{1/5}) = 5 log_{32}(\sqrt[5]{m}) .

Introduzindo a mudança de base para base 2 na última igualdade , segue :

5 log_{32}(\sqrt[5]{m})  =  5 \frac{log_{2}(\sqrt[5]{m})}{log_2(32)} = ... tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor Jhennyfer » Dom Ago 18, 2013 13:32

Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
2^k=\sqrt[5]{m}

não podemos substituir em Log_2\sqrt[5]{m} ????

assim...
Log_22^k

k.Log_22

k.1

Gabarito: K
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor e8group » Dom Ago 18, 2013 14:29

Jhennyfer escreveu:Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
2^k=\sqrt[5]{m}

não podemos substituir em Log_2\sqrt[5]{m} ????

assim...
Log_22^k

k.Log_22

k.1

Gabarito: K


É isso mesmo ,está correto .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor Jhennyfer » Dom Ago 18, 2013 16:00

Obrigado Santhiago...
Mas como eu havia dito, ainda tenho dúvidas nesse outro tipo de resolução que você deixou
santhiago escreveu:Introduzindo a mudança de base para base 2 na última igualdade , segue :
5.\frac{Log_2\sqrt[5]{m}}{Log_232}...
tente concluir e comente as dúvidas .


Será q você pode me ajudar respondendo a questão q eu deixei nesse outro link:
viewtopic.php?f=108&t=12758

Não é exatamente a mesma coisa, mas acho q pode acabar com muitas dúvidas q ainda tenho.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.