por Jhennyfer » Dom Ago 18, 2013 11:49
Oi pessoas...
boom a questão é a seguinte:
(UEPB) - Em 1614, o escocês John Napier (1550-1617) criou a ferramenta de calculo mais "afiada" que procedeu a invenção dos computadores, o logaritmo. Se

, então
![Log _{2}\sqrt[5]{m} Log _{2}\sqrt[5]{m}](/latexrender/pictures/d0e6c73acb053e481557591b65f00cce.png)
vale:
Bom tentei começando reduzindo o 32 a base 2...



e agora vem o meu problema (eu acho)...
![2=\sqrt[5]{m} 2=\sqrt[5]{m}](/latexrender/pictures/cc0ede511dc0aee33f85478da16d15ef.png)



Gabarito k...
esse calculo tá certo???
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Ago 18, 2013 12:52
As duas primeiras linhas de seu desenvolvimento estão corretas ,as demais etapas estão erradas.Como encontrou

? .
Note que
![32^k = m \iff 2^{5k} = m \iff (2^k)^5 =m \iff 2^k = \sqrt[5]{m} 32^k = m \iff 2^{5k} = m \iff (2^k)^5 =m \iff 2^k = \sqrt[5]{m}](/latexrender/pictures/4fa60ab8f7b46f84eb1601a5bafef58b.png)
. Aplicando o logaritmo de base 2 em ambos lados da igualdade obtém-se o que se pede no enunciado .De outra forma ,poderia começar "brincando " de multiplicar

por

.veja a equivalência :
![log_{32}(m) = 1 \cdot log_{32}(m) = \frac{5}{5} \cdot log_{32}(m) = 5 (\frac{1}{5} log_{32}(m)) = 5 log_{32}(m^{1/5}) = 5 log_{32}(\sqrt[5]{m}) log_{32}(m) = 1 \cdot log_{32}(m) = \frac{5}{5} \cdot log_{32}(m) = 5 (\frac{1}{5} log_{32}(m)) = 5 log_{32}(m^{1/5}) = 5 log_{32}(\sqrt[5]{m})](/latexrender/pictures/6ed8a3ac9e5456d5e8517d60e1af0873.png)
.
Introduzindo a mudança de base para base 2 na última igualdade , segue :
![5 log_{32}(\sqrt[5]{m}) = 5 \frac{log_{2}(\sqrt[5]{m})}{log_2(32)} = ... 5 log_{32}(\sqrt[5]{m}) = 5 \frac{log_{2}(\sqrt[5]{m})}{log_2(32)} = ...](/latexrender/pictures/23be7244fdffa5eec46b17fea56430f1.png)
tente concluir e comente as dúvidas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhennyfer » Dom Ago 18, 2013 13:32
Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
![2^k=\sqrt[5]{m} 2^k=\sqrt[5]{m}](/latexrender/pictures/fdeee196aeeddfd89f55c923494d3263.png)
não podemos substituir em
![Log_2\sqrt[5]{m} Log_2\sqrt[5]{m}](/latexrender/pictures/1060dbfe119625cc70f1c15e5da195d2.png)
????
assim...




-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Ago 18, 2013 14:29
Jhennyfer escreveu:Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
![2^k=\sqrt[5]{m} 2^k=\sqrt[5]{m}](/latexrender/pictures/fdeee196aeeddfd89f55c923494d3263.png)
não podemos substituir em
![Log_2\sqrt[5]{m} Log_2\sqrt[5]{m}](/latexrender/pictures/1060dbfe119625cc70f1c15e5da195d2.png)
????
assim...




É isso mesmo ,está correto .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhennyfer » Dom Ago 18, 2013 16:00
Obrigado Santhiago...
Mas como eu havia dito, ainda tenho dúvidas nesse outro tipo de resolução que você deixou
santhiago escreveu:Introduzindo a mudança de base para base 2 na última igualdade , segue :
![5.\frac{Log_2\sqrt[5]{m}}{Log_232} 5.\frac{Log_2\sqrt[5]{m}}{Log_232}](/latexrender/pictures/5c3e5673810e1c0209004e54ac99e824.png)
...
tente concluir e comente as dúvidas .
Será q você pode me ajudar respondendo a questão q eu deixei nesse outro link:
viewtopic.php?f=108&t=12758Não é exatamente a mesma coisa, mas acho q pode acabar com muitas dúvidas q ainda tenho.
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Juros] Não acho o tempo, não sei se estou fazendo certo
por AlexandreLuna » Ter Abr 24, 2012 20:46
- 3 Respostas
- 2761 Exibições
- Última mensagem por DanielFerreira

Qui Abr 26, 2012 20:10
Matemática Financeira
-
- ja tentei resolver e nada
por Sana2306 » Seg Set 21, 2009 14:43
- 2 Respostas
- 2034 Exibições
- Última mensagem por DanielFerreira

Sáb Set 26, 2009 12:18
Logaritmos
-
- Seno e cosseno de um arco trigonométrico, eu tentei resolver
por wesley_enrique » Dom Ago 08, 2010 19:38
- 6 Respostas
- 7484 Exibições
- Última mensagem por Pedro123

Seg Ago 09, 2010 18:59
Trigonometria
-
- tentei varias vezes ..mas ñ consegui resolver esses exercici
por ri20do » Seg Dez 15, 2008 00:03
- 1 Respostas
- 2564 Exibições
- Última mensagem por Molina

Ter Dez 16, 2008 16:47
Matemática Financeira
-
- Eu tentei, tentei e não consegui...
por phelipe » Seg Fev 08, 2010 12:40
- 4 Respostas
- 4614 Exibições
- Última mensagem por Elcioschin

Ter Fev 09, 2010 08:26
Desafios Médios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.