• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual a função inversa de:

Qual a função inversa de:

Mensagempor Dyego » Sex Mar 26, 2010 12:58

g(x) = 3 + x + e^x
Dyego
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Mar 18, 2010 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: cursando

Re: Qual a função inversa de:

Mensagempor 13run0 » Qui Mai 27, 2010 18:45

g(x)=3+x+e^x . . . eh isso??
então,
y = 3+x+e^x [subsituindo Y por X . . e X por Y]
x = 3+y+e^x [isolando o Y]
y = x-3-e^x [organizando]
y = e^x+x-3
g(x)^-1 = e^x+x-3


acredito que seja isso. . .
espero ter ajudado . . .
13run0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Mai 27, 2010 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Edificações
Andamento: formado

Re: Qual a função inversa de:

Mensagempor Molina » Qui Mai 27, 2010 20:45

13run0 escreveu:g(x)=3+x+e^x . . . eh isso??
então,
y = 3+x+e^x [subsituindo Y por X . . e X por Y]
x = 3+y+e^x [isolando o Y]
y = x-3-e^x [organizando]
y = e^x+x-3
g(x)^-1 = e^x+x-3


acredito que seja isso. . .
espero ter ajudado . . .

Boa noite.

Quando você fez a substituição dos X's pelos Y's você esqueceu de substituir o e^x por e^y.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Qual a função inversa de:

Mensagempor 13run0 » Qui Mai 27, 2010 23:47

Valeu pela observação Molina!

corrigindo então. . .

g(x)=3+x+e^x
então,
y = 3+x+e^x [subsituindo Y por X . . e X por Y]
x = 3+y+e^y [isolando o Y]
y = x-3-e^y [organizando]
y = e^y+x-3
g(x)^-1 = e^y+x-3
13run0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Mai 27, 2010 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Edificações
Andamento: formado

Re: Qual a função inversa de:

Mensagempor Molina » Sex Mai 28, 2010 00:00

De nada, Bruno.

Mas a questão é que a função inversa não pode ficar em função de x e y.

Temos que chegar no final em algo do tipo y = alguma\,coisa\,envolvendo\,numero\,e\,x
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Qual a função inversa de:

Mensagempor 13run0 » Sex Mai 28, 2010 14:17

Então como ficaria essa função inversa?

faz ela aí por favor. . .
13run0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Mai 27, 2010 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Edificações
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.