• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Descobrir zeros

Descobrir zeros

Mensagempor Tixa11 » Qui Jan 24, 2013 19:17

Como descobrir, analiticamente, quantos zeros tem a seguinte função:

f(x) : {x}^{3}-5{x}^{2}-x+6


Obrigado.
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Descobrir zeros

Mensagempor young_jedi » Qui Jan 24, 2013 22:01

nos temos que

f(-2)=(-2)^3-5.(-2)^2-(-2)+6=-20

f(0)=0^3-5.0-0+6=6

f(4)=4^3-5.4^2-4+6=-14

f(5)=5^3-5.5^2-5+6=1

veja que nos temos no intervalo de x indo de -2 até 5 tres mudanças de sinal em f(x)
portanto neste intervalo a função tem tres raizes ou seja tres zeros
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Descobrir zeros

Mensagempor Tixa11 » Sex Jan 25, 2013 20:30

young_jedi escreveu:nos temos que

f(-2)=(-2)^3-5.(-2)^2-(-2)+6=-20

f(0)=0^3-5.0-0+6=6

f(4)=4^3-5.4^2-4+6=-14

f(5)=5^3-5.5^2-5+6=1

veja que nos temos no intervalo de x indo de -2 até 5 tres mudanças de sinal em f(x)
portanto neste intervalo a função tem tres raizes ou seja tres zeros




Já entendi. Obrigado :)
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}