• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação potência

Inequação potência

Mensagempor brumadense » Sex Jan 22, 2010 00:34

Olá

Gostaria de uma ajuda sobre inequação potência. Sei que existem inequação potência com expoente par e ímpar. A de expoente ímpar eu entendir. Pois a inequação potência de expoente ímpar tem sempre o sinal da base, de acordo com esses exemplos:

(x - 4)^7 <= 0 ==> x - 4 <= 0 ==> x <= 4

(3x - 1)^1001 >= 0 ==> 3x - 1>= 0 ==> x >= 1/3

Agora não entendi as inequação de expoente par, gostaria de uma ajuda de como resolvê-las, eis uns exemplos:

(7 - 3x)^4 < 0

(2x - 1)^100 >= 0

Gostaria de saber como resolver as inequações potência de expoente par.
Obrigado.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Inequação potência

Mensagempor Elcioschin » Sex Jan 22, 2010 09:11

Um número real (positivo ou negativo) elevado a um expoente par será sempre POSITIVO.

Logo: (7 - 3x)^4 < 0 é IMPOSSÌVEL.

O outro dá para resolver:

(2x - 1)^100 >= 0 ----> (2x - 1)^100 = 0 -----> 2x - 1 = 0 ----> x = 1/2 ----> Solução geral -----> x >= 1/2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Inequação potência

Mensagempor brumadense » Qui Jan 28, 2010 02:58

Elcioschin escreveu:Um número real (positivo ou negativo) elevado a um expoente par será sempre POSITIVO.

Logo: (7-3x)^4 < 0 é IMPOSSÌVEL.

O outro dá para resolver:

(2x-1)^100 >= 0 ----> (2x-1)^100 = 0 -----> 2x - 1 = 0 ----> x = 1/2 ----> Solução geral -----> x >= 1/2



Olá Elcioschin, obrigado pela resposta.

A primeira questão eu entendi, agora gostaria de saber se poderia me ajudar nessas outras questões:

A segunda questão:

{(2x-1)}^{100} \geq 0 ,No livro em que estudo traz a seguinte resposta: S = R , gostaria de saber porque essa resposta S = R. Se puder me responder, agradeço.

Agora nessas questões:

{(3x-6)}^{6} \geq 0 ----> S = R , também não entendi do porque do S = R

Nessa outra questão:

{(3x-6)}^{6} > 0 ------> S = R – {2} , não entendi porque deu R – {2}

Essa questão:

{(3x-6)}^{6} < 0 ----- S = \phi ou seja, impossível, como você já explicou acima.

Agora essa outra questão:

{(3x-6)}^{6} \leq 0 ------> 3x – 6 \leq 0 ------> x = \frac{-6}{3} ----- > x = -2

No livro traz S = {2}

Agora não entendi do por quê deu 2 e não menos -2 , será que tem a ver com o sinal de = (igualdade) que acompanha o sinal de < (maior).


Desde já agradeço.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Inequação potência

Mensagempor Elcioschin » Qui Jan 28, 2010 09:16

Lembre-se do que eu expliquei antes:

TODA expressão REAL na variável x elevada a expoente PAR nunca será negativa.

Assim ----> (2x - 1)^100 nunca será NEGATIVA.

Logo ----> (2x - 1)^100 = 0 ----> é POSSÍVEL para x = 1/2 ----> (2x - 1)^100 > 0 é POSSÍVEL para qualquer valor de x

Logo a solução para (2x - 1) >= 0 é sempre possível, para QUALQUER valor REAL de x ----> {R}

Vamos agora ver o outro:

(3x - 6)^6 =< 0 ----> temos DUAS opções:

1) (3x - 6)^6 < 0 -----> IMPOSSÍVEL

2) (3x - 6)^6 = 0 -----> 3x - 6 = 0 ----> 3x = 6 ----> x = 6/3 ----> x = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?