• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Grandezas Diretamente e Inversamente Proporcionais

Grandezas Diretamente e Inversamente Proporcionais

Mensagempor Jhenrique » Seg Out 15, 2012 13:13

Saudações, caros estudantes!

Farei algumas afirmações e gostaria que as confirmassem como verdadeiras ou não, a final de contas, posso ter deduzido algo errado...

Grandezas Diretamente Proporcionais

(i) y:x=k

(ii) f(x\cdot n) = f(x)\cdot n

(iii) f(x_1+x_2) = k(x_1+x_2) = kx_1 + kx_2 = f(x_1)+f(x_2)

Do tipo Expononencial

(i) y^{\frac{1}{x}}=k

(ii) f(x\cdot n) = f(x)^n

(iii) f(x_1+x_2) = k^{x_1+x_2} = k^{x_1}\cdot k^{x_2} = f(x_1)\cdot f(x_2)

Grandezas Inversamente Proporcionais

(i) y\cdot x=k

(ii) f(x\cdot n) = f(x):n

(iii) f(x_1+x_2) = k(1:x_1 + 1:x_2) = k:x_1 + k:x_2 = f(x_1)+f(x_2)

Do tipo logarítmica

(i) x^{\frac {1}{y}} = k

(ii) f(x^n)=f(x)\cdot n

(iii) f(x_1\cdot x_2) = log_{k}(x_1\cdot x_2) = log_{k}(x_1)+log_{k}(x_2) = f(x_1)+f(x_2)

Estão corretas?

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor young_jedi » Seg Out 15, 2012 15:35

verifiquei um equivoco, no tipo inversamente proporcional item III

f(x_1+x_2)=\frac{k}{x_1+x_2}=\frac{k}{\frac{1}{x_2}+\frac{1}{x_1}}\frac{1}{x_1.x_2}=

=\frac{1}{\frac{k}{x_2}+\frac{k}{x_1}}\frac{k.k}{x_1.x_2}=\frac{f(x_1).f(x_2)}{f(x_2)+f(x_1)}

como voce pode ver o resultado é diferente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor Jhenrique » Sáb Out 20, 2012 23:37

Tá tudo errado!

Vou redefinir os conceitos a fim de que se alguém pesquisar o assunto no fórum, que fique bem informado!

• Grandezas diretamente proporcionais

y=kx

sua simétrica

y=\frac{1}{k} x

do tipo exponencial

y=k^{x}

sua simétrica

y=log_{k}(x)

• Grandezas inversamente proporcionais

y=k\frac{1}{x}

sua simétrica

y=k\frac{1}{x}

do tipo exponencial

y=k^{\frac{1}{x} }

sua simétrica

y=log_{x}(k)

o resto é consequência dessas definições...

Jedi, vlw pelo alerta!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor e8group » Sáb Out 20, 2012 23:49

Tome cuidado com ii) . Não necessariamente f(x\cdot n)  = f(x) \cdot n . Contra exemplo , vamos supor que f(x)  = x^3  + x  + 5 .É fácil ver que f( xn ) \neq  f(x) \cdot n pois , f( xn)  = (xn)^3 +xn + 5 \neq  n( x^3  + x  + 5 ) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor Jhenrique » Seg Nov 05, 2012 13:55

santhiago escreveu:Tome cuidado com ii) . Não necessariamente f(x\cdot n)  = f(x) \cdot n . Contra exemplo , vamos supor que f(x)  = x^3  + x  + 5 .É fácil ver que f( xn ) \neq  f(x) \cdot n pois , f( xn)  = (xn)^3 +xn + 5 \neq  n( x^3  + x  + 5 ) .


Ah, então, não te respondi antes pq estava ocupado, mas já estudei o assunto.

Realmente, seu contra-exemplo está certo. Porém, a função que vc usou não satisfaz nenhuma das igualdades proporcionais abaixo.

a:b=c
a\cdot b=c
a^{:b}=c
a^{\cdot b}=c

*Sendo a e b as váriveis e c a constante de proporcionalidade.

A função que vc citou não é uma proporção, não porque ela é do 2º grau, mas sim porque não é possível isolar as variáveis no 1º mebro e as constantes no 2º membro.

Eu até lanço a seguinte reflexão e questionamento: o requisito algébrico para grandezas serem proporcionais, é satisfazer uma das quatro equações acima, ok. Mas supondo b é a variável x, se x for x^2, x^3, x^4 ou x^n, todas as propriedades de proporcionalidade continua sendo válidas, independente do expoente da variável x, fato.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}