• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação

inequação

Mensagempor jose henrique » Sáb Mar 26, 2011 00:41

\frac{x-3}{{x}^{2}+3x-4}\leq 0  \Leftrightarrow \frac{x-3}{(x-4)(x+1)}\leq 0

eu achei como solução
o intervalo
S= (-\infty, -1) \cup (3,4]

porém o gabarito da prova diz que a resposta é
S=(-\infty, -4) \cup (1,3]

qual deles está errado? desde já, agradeço a quem puder me ajudar.
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequação

Mensagempor MarceloFantini » Sáb Mar 26, 2011 01:46

Acredito que você tenha errado na fatoração. (x-4)(x+1) = x^2 +x -4x -4 = x^2 -3x -4.

A certa é (x+4)(x-1) = x^2 -x +4x -4 = x^2 +3x -4. Refaça usando isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequação

Mensagempor FilipeCaceres » Sáb Mar 26, 2011 01:51

Ola

Você encontrou uma solução diferente pois errou o sinal na fatoração. Corrigindo temos?
\frac{x-3}{{x}^{2}+3x-4}\leq 0 \Leftrightarrow \frac{x-3}{(x-1)(x+4)}\leq 0

Se não conseguir é só falar que eu posto a solução.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: inequação

Mensagempor jose henrique » Sáb Mar 26, 2011 10:47

na verdade eu resolvi a equação {x}^{2}+3x-4=0 onde eu achei os valores S= {-4, 1}
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequação

Mensagempor MarceloFantini » Sáb Mar 26, 2011 15:27

Lembre-se que quando fatoramos polinômios, o resultado é a(x - x_1)(x - x_2). Como x_1 = -4 e x_2 = 1, (x - (-4))(x-1) = (x+4)(x-1) e não (x-4)(x+1) como você havia feito.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.