• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Grupos e Subgrupos

Grupos e Subgrupos

Mensagempor Renato_RJ » Sex Jan 21, 2011 13:18

Olá amigos, estou com um problema que eu não consigo resolver (talvez eu não tenha entendido muito bem o problema), vejam:

Verifique se A ou B é subgrupo do grupo multiplicativo \mathbb{Q}^* :

A = \{ x \in \mathbb{Q} \, \mid x \textgreater 0 \}

B = \{ \frac{1 + 2 \cdot m}{1 + 2 \cdot n} \mid m,n \in \mathbb{Z} \}

Eu acho que somente A é subgrupo, mas gostaria da opinião de vocês, estou certo ?

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Grupos e Subgrupos

Mensagempor Elcioschin » Sex Jan 21, 2011 14:10

Conjunto Q*

Q = Conjunto dos números RACIONAIS
* = diferentes de zero

Exemplos de números de Q* ----> - 3 ; - 1/3 ; 1; 5/19 , etc

Conjunto A ----> Q (racional) > 0 ----> Exemplos: 1 ; 5/19 etc.

Logo A é subgrupo de Q*


Conjunto B = (1 + 2m)/(1 + 2n) com m, n pertencente a Z ( inteiros quaisquer, positivos negativos ou nulos)

Para m inteiro (1 + 2m) é sempre inteiro diferente de zero. Idem para (1 + 2n)

Logo, B é a razão ente dois inteiros (positivos ou negativos) e diferentes de zero ----> B é racional

B é subgrupo de Q*
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Grupos e Subgrupos

Mensagempor Renato_RJ » Sex Jan 21, 2011 14:39

Então B também é subgrupo do grupo multiplicativo \mathbb{Q} ???

Obrigado pela informação...

Abs,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Grupos e Subgrupos

Mensagempor LuizAquino » Sex Jan 21, 2011 15:30

Olá Pessoal,

Primeiro, vamos revisar alguns conceitos.

Seja G um conjunto e * uma operação binária definida sobre G, o par ordenado (G,*) é um grupo se são satisfeitas as seguintes propriedades:
  • Associatividade: Quaisquer elementos a,b,c pertencentes a G, (a * b) * c = a * (b * c)
  • Existência do elemento neutro: Existe um elemento e em G tal que e * a = a * e = a, para todo a pertencente a G.
  • Existência do elemento simétrico: Para qualquer elemento a em G, existe outro elemento a' em G, tal que, a * a' = a' * a = e, onde e é o elemento neutro previamente mencionado.

Um subgrupo de um grupo G é um subconjunto H de G que também seja um grupo para a mesma operação.

No exercício, temos o grupo (\mathbb{Q}, *), onde * é a operação de multiplicação. Atenção: Não confundir isso com o conjunto \mathbb{Q}^*.

Agora, para verificar se A e B são subgrupos de (\mathbb{Q}, *), precisamos mostrar que A e B são subconjuntos de \mathbb{Q} e além disso que (A, *) e (B, *) são grupos. Nesse exercício em particular tanto A e B são subgrupos, pois atendem a essas condições.

Em particular, note que o conjunto C = \{ x\in\mathbb{Q} | x\geq 0 \} não é subgrupo de (\mathbb{Q}, *), apesar de C ser um subconjunto de \mathbb{Q}. Isso porque nesse caso (C, *) não é grupo, pois há um elemento no conjunto que não possui o simétrico da operação dada (note que não há inverso multiplicativo de 0).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Grupos e Subgrupos

Mensagempor Renato_RJ » Sex Jan 21, 2011 16:39

Muito obrigado Luiz !!!

Sua explicação foi muito esclarecedora e eliminou por vez algumas dúvidas bobas que eu estava tendo ao estudar a disciplina.... :y: :y:

Grato, muito grato.
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: