• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aplicações de Derivada [Teorema do valor médio]

Aplicações de Derivada [Teorema do valor médio]

Mensagempor xanda2012 » Sáb Jun 16, 2012 16:22

Como eu sei que a equação 6x^5+5x^3+4x+3 tem exatamente uma raiz real? Não foi dado nenhum intervalo.
xanda2012
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mai 02, 2012 11:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Aplicações de Derivada [Teorema do valor médio]

Mensagempor e8group » Sáb Jun 16, 2012 17:30

Boa tarde xanda2012 , Há neste tópico (viewtopic.php?f=120&t=8629) um exercício análogo ao seu com o mesmo objetivo . Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Aplicações de Derivada [Teorema do valor médio]

Mensagempor xanda2012 » Sáb Jun 16, 2012 17:43

santhiago escreveu:Boa tarde xanda2012 , Há neste tópico (viewtopic.php?f=120&t=8629) um exercício análogo ao seu com o mesmo objetivo . Espero que ajude .


Entendi que pela lógica é possível deduzir que há exatamente uma raiz real, mas a minha dúvida é quanto a provar que não existe uma segunda equação através do desenvolvimento da equação, então chegaríamos a uma resposta "absurda", mas não sei como fazer isso.

De qualquer forma, obrigada Santiago :)
xanda2012
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mai 02, 2012 11:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.