• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Definida do cosseno

Integral Definida do cosseno

Mensagempor ENG » Sáb Abr 28, 2012 04:09

Olá. Estou estudando, através de um livro, o cálculo do coeficiente para uma serie trig. de Fourier de uma certa função. Lá tem um exemplo assim:
{a}_{n}=\frac{2}{0,2}\int_{0}^{0,1}5.cos\,n\,{\omega}_{0}\,t\,dt=\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right] e a solução do exemplo continua...

O trecho no qual está minha dúvida é a última parte da expressão( teria que colocar os limites 0 e 0,1 nos colchetes mas não consegui):
\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right]

Sei que \int_{}^{} cos\,u\,du = sen\,u + C, mas como surgiu \frac{1}{n{\omega}_{0}} ?
ENG
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 28, 2012 03:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral Definida do cosseno

Mensagempor Russman » Sáb Abr 28, 2012 04:48

Pense na função

f(x) = cos(kx) , onde k é uma constante real.

Se vc integrar esta função com ralação a x terá de apelar para uma substituição, a fim de tomar o integrando como f(u) = cos(u). Veja, tomando u(x)=kx temos então dx = \frac{1}{k}du e , portanto,

\int_{}^{}cos(kx)dx = \int_{}^{}cos(u) \frac{du}{k} = \frac{1}{k}\int_{}^{}cos(u) du =\frac{1}{k}sen(u) +c = \frac{1}{k}sen(kx) + c.

A sua integral é com relação a t e não n{\omega}_{0}t.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: