• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Definida do cosseno

Integral Definida do cosseno

Mensagempor ENG » Sáb Abr 28, 2012 04:09

Olá. Estou estudando, através de um livro, o cálculo do coeficiente para uma serie trig. de Fourier de uma certa função. Lá tem um exemplo assim:
{a}_{n}=\frac{2}{0,2}\int_{0}^{0,1}5.cos\,n\,{\omega}_{0}\,t\,dt=\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right] e a solução do exemplo continua...

O trecho no qual está minha dúvida é a última parte da expressão( teria que colocar os limites 0 e 0,1 nos colchetes mas não consegui):
\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right]

Sei que \int_{}^{} cos\,u\,du = sen\,u + C, mas como surgiu \frac{1}{n{\omega}_{0}} ?
ENG
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 28, 2012 03:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral Definida do cosseno

Mensagempor Russman » Sáb Abr 28, 2012 04:48

Pense na função

f(x) = cos(kx) , onde k é uma constante real.

Se vc integrar esta função com ralação a x terá de apelar para uma substituição, a fim de tomar o integrando como f(u) = cos(u). Veja, tomando u(x)=kx temos então dx = \frac{1}{k}du e , portanto,

\int_{}^{}cos(kx)dx = \int_{}^{}cos(u) \frac{du}{k} = \frac{1}{k}\int_{}^{}cos(u) du =\frac{1}{k}sen(u) +c = \frac{1}{k}sen(kx) + c.

A sua integral é com relação a t e não n{\omega}_{0}t.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}