• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de área (produto vetorial)

Cálculo de área (produto vetorial)

Mensagempor wlima » Sáb Abr 28, 2012 00:45

Estou tentando obter a resolução do seguinte problema.

Sabendo que o módulo do vetor u = 6 , o modulo do vetor v =4 e 30º o ângulo formado entre u e v.


Calcular a área do paralelogramo determinado por u+v e u-v.

Realize o esboço dos vetores, e apliquei algumas formulas, leis dos cossenos, módulo da área.

Se alguem puder me orientar, preciso entender a resolução.


Obrigado
wlima
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 28, 2012 00:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: Cálculo de área (produto vetorial)

Mensagempor Russman » Sáb Abr 28, 2012 06:19

A área do paralelogramo que pode ser formado por dois vetores \overrightarrow{a} e \overrightarrow{b} é dada pelo módulo se seu produto vetorial, isto é, seja S a área entao

S = \left| \overrightarrow{b}\times \overrightarrow{a} \right|=\left|\overrightarrow{a} \right| . \left|\overrightarrow{b} \right|.sin(\theta),

onde \theta é o angulo entre os vetores.

Efetuando o produto vetorial observamos que

S = \left|(\overrightarrow{u}+\overrightarrow{v})\times (\overrightarrow{u}-\overrightarrow{v}) \right|=
=  \left|(\overrightarrow{u}\times \overrightarrow{u} - \overrightarrow{u}\times \overrightarrow{v}+\overrightarrow{v}\times \overrightarrow{u}-\overrightarrow{v}\times \overrightarrow{v}\right| = 2\left|(\overrightarrow{u}\times \overrightarrow{v})\right|,

pois \overrightarrow{u}\times \overrightarrow{v}=-\overrightarrow{v}\times \overrightarrow{u} e \overrightarrow{u}\times \overrightarrow{u} = \overrightarrow{v}\times \overrightarrow{v} =\overrightarrow{0} .

Portanto, S = 2\left|(\overrightarrow{u}\times \overrightarrow{v})\right| = u.v.sin(\theta) = 2.6.4.sin(30) = 24

Para confirmar isto podemos calcular de outra forma. Pois bem, o problema pede que você calcule a área do paralelogramo entre os vetores (\overrightarrow{u}+\overrightarrow{v}) e (\overrightarrow{u}-\overrightarrow{v}). Assim, você precisa conhecer o módulo destes vetores e o angulo entre eles! ( Veja que a soma e a subtração de veotres geram novos vetores).

É conhecido e facilmente demons trável que

{\left|\overrightarrow{u+v} \right|}^{2} = {u}^{2} + 2uv.cos(\theta) + {v}^{2}

{\left|\overrightarrow{u-v} \right|}^{2} = {u}^{2} - 2uv.cos(\theta) + {v}^{2},

onde as letras sem flechas representam o módulo do respectivo vetor, isto é, a = \left|\overrightarrow{a} \right| e \theta o angulo ja mencionado.

Assim,

{\left|\overrightarrow{u+v} \right|}^{2} = {u}^{2} + 2uv.cos(\theta) + {v}^{2} = {6}^{2} + 2.6.4.cos({30}^{o}) + {4}^{2} = 52 + 24\sqrt[]{3}.

{\left|\overrightarrow{u+v} \right|}^{2} = {u}^{2} + 2uv.cos(\theta) + {v}^{2} = {6}^{2} - 2.6.4.cos({30}^{o}) + {4}^{2} = 52 - 24\sqrt[]{3}.

Agora, o angulo entres estes veotores podemos calcular usando o produto escalar.

\theta = arcos\frac{(\overrightarrow{u} + \overrightarrow{v})\cdot (\overrightarrow{u}-\overrightarrow{v})}{\left | (\overrightarrow{u} + \overrightarrow{v}) \right |.\left | \overrightarrow{u} - \overrightarrow{v}) \right |} = arcos\frac{u^{2} - v^{2}}{4\sqrt{61}} =arcos \frac{5}{\sqrt{61}}

De onde, sin(\theta) = sin( arcos \frac{5}{\sqrt{61}}) = \frac{6}{\sqrt{61}}. Portanto,

S = \left | (\overrightarrow{u}+\overrightarrow{v})\times (\overrightarrow{u}-\overrightarrow{u}) \right |= \left | (\overrightarrow{u}+\overrightarrow{v})\right | . \left | (\overrightarrow{u}-\overrightarrow{v})\right | . sin(\theta ) = 4\sqrt{61}.\frac{6}{\sqrt{61}}=24.

O primeiro método é bem mais simples e direto.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo de área (produto vetorial)

Mensagempor wlima » Sáb Abr 28, 2012 09:02

Obrigado Russman, sua explanação está ótima.
wlima
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 28, 2012 00:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}