• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de área (produto vetorial)

Cálculo de área (produto vetorial)

Mensagempor wlima » Sáb Abr 28, 2012 00:45

Estou tentando obter a resolução do seguinte problema.

Sabendo que o módulo do vetor u = 6 , o modulo do vetor v =4 e 30º o ângulo formado entre u e v.


Calcular a área do paralelogramo determinado por u+v e u-v.

Realize o esboço dos vetores, e apliquei algumas formulas, leis dos cossenos, módulo da área.

Se alguem puder me orientar, preciso entender a resolução.


Obrigado
wlima
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 28, 2012 00:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: Cálculo de área (produto vetorial)

Mensagempor Russman » Sáb Abr 28, 2012 06:19

A área do paralelogramo que pode ser formado por dois vetores \overrightarrow{a} e \overrightarrow{b} é dada pelo módulo se seu produto vetorial, isto é, seja S a área entao

S = \left| \overrightarrow{b}\times \overrightarrow{a} \right|=\left|\overrightarrow{a} \right| . \left|\overrightarrow{b} \right|.sin(\theta),

onde \theta é o angulo entre os vetores.

Efetuando o produto vetorial observamos que

S = \left|(\overrightarrow{u}+\overrightarrow{v})\times (\overrightarrow{u}-\overrightarrow{v}) \right|=
=  \left|(\overrightarrow{u}\times \overrightarrow{u} - \overrightarrow{u}\times \overrightarrow{v}+\overrightarrow{v}\times \overrightarrow{u}-\overrightarrow{v}\times \overrightarrow{v}\right| = 2\left|(\overrightarrow{u}\times \overrightarrow{v})\right|,

pois \overrightarrow{u}\times \overrightarrow{v}=-\overrightarrow{v}\times \overrightarrow{u} e \overrightarrow{u}\times \overrightarrow{u} = \overrightarrow{v}\times \overrightarrow{v} =\overrightarrow{0} .

Portanto, S = 2\left|(\overrightarrow{u}\times \overrightarrow{v})\right| = u.v.sin(\theta) = 2.6.4.sin(30) = 24

Para confirmar isto podemos calcular de outra forma. Pois bem, o problema pede que você calcule a área do paralelogramo entre os vetores (\overrightarrow{u}+\overrightarrow{v}) e (\overrightarrow{u}-\overrightarrow{v}). Assim, você precisa conhecer o módulo destes vetores e o angulo entre eles! ( Veja que a soma e a subtração de veotres geram novos vetores).

É conhecido e facilmente demons trável que

{\left|\overrightarrow{u+v} \right|}^{2} = {u}^{2} + 2uv.cos(\theta) + {v}^{2}

{\left|\overrightarrow{u-v} \right|}^{2} = {u}^{2} - 2uv.cos(\theta) + {v}^{2},

onde as letras sem flechas representam o módulo do respectivo vetor, isto é, a = \left|\overrightarrow{a} \right| e \theta o angulo ja mencionado.

Assim,

{\left|\overrightarrow{u+v} \right|}^{2} = {u}^{2} + 2uv.cos(\theta) + {v}^{2} = {6}^{2} + 2.6.4.cos({30}^{o}) + {4}^{2} = 52 + 24\sqrt[]{3}.

{\left|\overrightarrow{u+v} \right|}^{2} = {u}^{2} + 2uv.cos(\theta) + {v}^{2} = {6}^{2} - 2.6.4.cos({30}^{o}) + {4}^{2} = 52 - 24\sqrt[]{3}.

Agora, o angulo entres estes veotores podemos calcular usando o produto escalar.

\theta = arcos\frac{(\overrightarrow{u} + \overrightarrow{v})\cdot (\overrightarrow{u}-\overrightarrow{v})}{\left | (\overrightarrow{u} + \overrightarrow{v}) \right |.\left | \overrightarrow{u} - \overrightarrow{v}) \right |} = arcos\frac{u^{2} - v^{2}}{4\sqrt{61}} =arcos \frac{5}{\sqrt{61}}

De onde, sin(\theta) = sin( arcos \frac{5}{\sqrt{61}}) = \frac{6}{\sqrt{61}}. Portanto,

S = \left | (\overrightarrow{u}+\overrightarrow{v})\times (\overrightarrow{u}-\overrightarrow{u}) \right |= \left | (\overrightarrow{u}+\overrightarrow{v})\right | . \left | (\overrightarrow{u}-\overrightarrow{v})\right | . sin(\theta ) = 4\sqrt{61}.\frac{6}{\sqrt{61}}=24.

O primeiro método é bem mais simples e direto.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo de área (produto vetorial)

Mensagempor wlima » Sáb Abr 28, 2012 09:02

Obrigado Russman, sua explanação está ótima.
wlima
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 28, 2012 00:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}