• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probleminha de Notação Científica

Probleminha de Notação Científica

Mensagempor Yumi » Qui Abr 12, 2012 18:23

Já tentei de tudo mas não chego em nenhuma resposta... Meu cérebro vai fundir!!! Alguém me ajude por favor. Qualquer dica é bem vinda...

Um certo tipo de vírus tem um diâmetro de 0,02 x 10 elevado a três mm. Admita que uma colônia desses vírus pudesse ocupar totalmente uma superfície plana de 1 cm quadrado de área, numa única camada. Qual é o número máximo de indivíduos dessa colônia?

A - 4 x 10 elevado a seis
B - 25 x 10 elevado a seis
C - 25 x 10 elevado a dez
D - 25 x 10 elevado a doze
E - 50 x 10 elevado a doze
Yumi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: cursando

Re: Probleminha de Notação Científica

Mensagempor MarceloFantini » Qui Abr 12, 2012 19:28

Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.

Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo r = \frac{d}{2} = 0,01 \cdot 10^{-3} \text{ mm}. A área ocupada pelo vírus portanto é A_v = \pi r^2 = \pi (0,01 \cdot 10^{-3})^2 = \pi (10^{-5})^2 = \pi 10^{-10} \text { mm}^2.

Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Probleminha de Notação Científica

Mensagempor Yumi » Qui Abr 12, 2012 20:51

MarceloFantini escreveu:Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.

Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo r = \frac{d}{2} = 0,01 \cdot 10^{-3} \text{ mm}. A área ocupada pelo vírus portanto é A_v = \pi r^2 = \pi (0,01 \cdot 10^{-3})^2 = \pi (10^{-5})^2 = \pi 10^{-10} \text { mm}^2.

Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.


Me desculpe.

Minha nossa... fiquei ainda mais perdida...
Yumi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: