por Yumi » Qui Abr 12, 2012 18:23
Já tentei de tudo mas não chego em nenhuma resposta... Meu cérebro vai fundir!!! Alguém me ajude por favor. Qualquer dica é bem vinda...
Um certo tipo de vírus tem um diâmetro de 0,02 x 10 elevado a três mm. Admita que uma colônia desses vírus pudesse ocupar totalmente uma superfície plana de 1 cm quadrado de área, numa única camada. Qual é o número máximo de indivíduos dessa colônia?
A - 4 x 10 elevado a seis
B - 25 x 10 elevado a seis
C - 25 x 10 elevado a dez
D - 25 x 10 elevado a doze
E - 50 x 10 elevado a doze
-
Yumi
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Abr 12, 2012 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Pedagogia
- Andamento: cursando
por MarceloFantini » Qui Abr 12, 2012 19:28
Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.
Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo

. A área ocupada pelo vírus portanto é

.
Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Yumi » Qui Abr 12, 2012 20:51
MarceloFantini escreveu:Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.
Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo

. A área ocupada pelo vírus portanto é

.
Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.
Me desculpe.
Minha nossa... fiquei ainda mais perdida...
-
Yumi
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Abr 12, 2012 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Pedagogia
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- notação cientifica
por jose henrique » Qui Fev 10, 2011 22:45
- 1 Respostas
- 2396 Exibições
- Última mensagem por Molina

Sex Fev 11, 2011 02:16
Álgebra Elementar
-
- notação científica
por dandara » Dom Abr 24, 2016 11:32
- 1 Respostas
- 2681 Exibições
- Última mensagem por DanielFerreira

Dom Abr 24, 2016 14:18
Aritmética
-
- notação cientifica
por ezidia51 » Ter Mar 13, 2018 12:33
- 4 Respostas
- 3507 Exibições
- Última mensagem por ezidia51

Ter Mar 13, 2018 22:58
Números Complexos
-
- Questão de notação científica!
por LuizCarlos » Dom Out 23, 2011 17:44
- 1 Respostas
- 1868 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 31, 2012 19:15
Álgebra Elementar
-
- Notação Científica e Potenciação
por Bielto » Sáb Jul 28, 2012 10:35
- 4 Respostas
- 3726 Exibições
- Última mensagem por LuizAquino

Sáb Jul 28, 2012 14:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.