• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probleminha de Notação Científica

Probleminha de Notação Científica

Mensagempor Yumi » Qui Abr 12, 2012 18:23

Já tentei de tudo mas não chego em nenhuma resposta... Meu cérebro vai fundir!!! Alguém me ajude por favor. Qualquer dica é bem vinda...

Um certo tipo de vírus tem um diâmetro de 0,02 x 10 elevado a três mm. Admita que uma colônia desses vírus pudesse ocupar totalmente uma superfície plana de 1 cm quadrado de área, numa única camada. Qual é o número máximo de indivíduos dessa colônia?

A - 4 x 10 elevado a seis
B - 25 x 10 elevado a seis
C - 25 x 10 elevado a dez
D - 25 x 10 elevado a doze
E - 50 x 10 elevado a doze
Yumi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: cursando

Re: Probleminha de Notação Científica

Mensagempor MarceloFantini » Qui Abr 12, 2012 19:28

Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.

Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo r = \frac{d}{2} = 0,01 \cdot 10^{-3} \text{ mm}. A área ocupada pelo vírus portanto é A_v = \pi r^2 = \pi (0,01 \cdot 10^{-3})^2 = \pi (10^{-5})^2 = \pi 10^{-10} \text { mm}^2.

Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Probleminha de Notação Científica

Mensagempor Yumi » Qui Abr 12, 2012 20:51

MarceloFantini escreveu:Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.

Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo r = \frac{d}{2} = 0,01 \cdot 10^{-3} \text{ mm}. A área ocupada pelo vírus portanto é A_v = \pi r^2 = \pi (0,01 \cdot 10^{-3})^2 = \pi (10^{-5})^2 = \pi 10^{-10} \text { mm}^2.

Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.


Me desculpe.

Minha nossa... fiquei ainda mais perdida...
Yumi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.