• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fração] Conjunto Solução

[Fração] Conjunto Solução

Mensagempor Lari » Qua Mar 21, 2012 22:21

Determine o conjunto solução:

\left({\frac{9}{16}} \right)^{4x+4} \chi  \left({\frac{3}{4}} \right)^{2x+1}\leq \left({\frac{27}{64}} \right)^{x-4}


Coloquei todos na mesma base e passei a trabalhar só com os expoentes.
Depois tudo ficou na mesma equação e igualei à zero para tirar ar raízes, mas ai o baskara ficou negativo ):

Tem outro jeito de resolver ou eu que resolvi errado?
Pelas respostas da lista deveria dar S={-16/6}
Lari
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 21, 2012 21:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [Fração] Conjunto Solução

Mensagempor Juvenal » Sex Mar 23, 2012 12:50

Tem certeza que foi esta equação exponencial mesmo?

Ela não terá baskara, pois será do primeiro grau e a solução dela não é a que vc postou aqui.

Pode enviar parte da sua resolução para que possamos ver?
Juvenal
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Mar 20, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.