por Ana_Rodrigues » Qua Fev 01, 2012 13:58
Para o limite

Encontre os valores de

que correspondam a

e

Não consigo resolver essa questão, eu paro em:

Para

e

Para

-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fraol » Qua Fev 01, 2012 20:43
Da definição de limite temos:
Para todo

, existe um

tal que
Se

, então

.
Como foram dados

e

e, também, sabemos que o tal

é em função de

, então para simplificar escolha

, ou seja

e

respectivamente.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Ana_Rodrigues » Qua Fev 01, 2012 23:08
Não entendi.
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fraol » Qui Fev 02, 2012 00:03
Oi,
Aquela foi uma aproximação. Dá pra ser um pouco mais preciso pensando da seguinte forma:
Dar

significa dizer que na epsilon-vizinhança de 2, que é o limite, a função varia entre

e

. Esta variação no valor da função deve-se ao fato de que x variou na vizinhança de 1 uma quantidade

que é função do tal

.
Vamos ver a álgebra dessa conversa:

significa que a função variou entre 1,5 e 2,5. Pegando os extremos:

então

cuja raiz real é aproximadamente 0,94

então

cuja raiz real é aproximadamente 1,06
Isto quer dizer que x variou de 0.94 a 1.06 e portanto nosso

.
Raciocínio igual para o caso de

nos levará a

.
Anexo uma figura ilustrativa da ideia desse limite ( para o caso de

).

- limite
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Ana_Rodrigues » Qui Fev 02, 2012 14:55
Eu sei como é.
Na verdade minha dúvida é achar a raiz, sem precisar usar uma ferramenta gráfica pra isso.
Em

, como eu acho a raiz?
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ant_dii » Qui Fev 02, 2012 21:43
Ana_Rodrigues escreveu:Eu sei como é.
Na verdade minha dúvida é achar a raiz, sem precisar usar uma ferramenta gráfica pra isso.
Em

, como eu acho a raiz?
Ana, você já estudou derivada??
Existe um método que retorna aproximações (que no caso, é o que você precisa), chamado método de Newton que tem o objetivo de estimar as raízes de uma função. Mas ele depende de noções básicas de derivada.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Ana_Rodrigues » Sex Fev 03, 2012 15:01
Eu perdi calculo 1 período passado, e estou começando do zero ( ou quase isso, rsrs). Meu professor deve ter ensinado isso na aula, mas a verdade é que eu ainda não estudei, entretanto eu tenho algumas noções básicas de derivadas.
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ant_dii » Sex Fev 03, 2012 21:25
Sendo assim, o método consiste em tomar um ponto qualquer da função, calcular a equação da tangente (derivada) da função nesse ponto, calcular o intercepto da tangente ao eixo x, calcular o valor da função nesse ponto, e repetir o processo até onde achar necessário, pois depois de um tempo o valor que o processo retorna começa a se repetir e o calculo fica longo.
Este processo deve te levar a uma das raízes da função rapidamente, ou a nada.
Matematicamente, tem-se que fazer

onde n indica a n-ésima interação...
Para começar você deve estabelecer um intervalo onde supostamente contém a raiz da função. Para saber se existe uma raiz em um determinado intervalo você precisa estudar o sinal da função neste intervalo, se ao calcular o valor nos extremos obter sinais diferentes quer dizer que existe uma raiz...
Há algumas outras condições, mas procure mais sobre o assunto. Melhor mesmo, é fazer um exemplo... Usando seu caso temos que no intevalo
![[0, \,1] [0, \,1]](/latexrender/pictures/4e6005816d25d5de0a8a8af719bb7852.png)
, a função troca de sinal, pois

e

...
Temos que

.
Como para

temos um valor mais próximo de zero para f, vamos tomar

para inicir a interação. Assim, temos



Você pode continuar para obter uma aproximação melhor... A raiz com aproximação de 15 casa decimais é dada por

Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.