• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada e composta]

[Derivada e composta]

Mensagempor Saruka » Sex Nov 11, 2011 18:26

Estou com alguma pressa em saber a resolução de um exercicio que saiu numa frequencia de analise do ano passado na universidade que frequento.

Calcule, usando o Teorema da derivada da funçao composta (fog)' (6)

f(x)={x}^{3} +1\;\;\;\;\;\;g(x)= 2\sqrt[2]{x-4}

O que fiz foi:
3({2\sqrt[2]{x-4}}^{2}) = 3 [4(x-4)] = 12x-48

Chegando à parte em que tenho que fazer a derivada de g empanquei mesmo. Fiz:

[2(\frac{1}{2} * {x-4}^{\frac{-1}{2}} * (x-4)'\:]

Alguem me pode ajudar a entender como se faz a derivada com raiz?
Saruka
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 11, 2011 18:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em engenharia informatica
Andamento: cursando

Re: [Derivada e composta]

Mensagempor Saruka » Sex Nov 11, 2011 18:33

Na parte do
3({2\sqrt[2]{x-4}}^{2}) = 3 [4(x-4)] = 12x-48

o está tudo elevado ao quadrado excepto o 3
Saruka
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 11, 2011 18:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em engenharia informatica
Andamento: cursando

Re: [Derivada e composta]

Mensagempor LuizAquino » Qui Nov 17, 2011 17:18

Saruka escreveu:Calcule, usando o Teorema da derivada da funçao composta (fog)' (6)

f(x)={x}^{3} +1

g(x)= 2\sqrt{x-4}


Saruka escreveu:O que fiz foi:
3\left(2\sqrt{x-4}\right)^{2} = 3 [4(x-4)] = 12x-48

Desde que x-4 > 0, você pode fazer essa simplificação. No caso geral, o correto seria usar módulo:

3\left(2\sqrt{x-4}\right)^{2} = 3 (4|x-4|) = |12x-48|

Saruka escreveu:Chegando à parte em que tenho que fazer a derivada de g empanquei mesmo. Fiz:

2\cdot \frac{1}{2} \cdot \left(x-4\right)^{\frac{-1}{2}} \cdot (x-4)^\prime


Você está no caminho certo. Basta continuar:

2\cdot \frac{1}{2} \cdot \left(x-4\right)^{\frac{-1}{2}} \cdot (x-4)^\prime =

= 1 \cdot \frac{1}{\left(x-4\right)^{\frac{1}{2}}} \cdot 1

= \frac{1}{\sqrt{x-4}}

Observação

Note que você não precisa necessariamente encontrar a expressão para (fog)' (x). Afinal de contas, o exercício pede apenas (fog)' (6).

Utilizando a regra da cadeia, você sabe que (fog)' (x) = f'(g(x))g'(x). Basta então calcular f'(g(6))g'(6).

Note que:

g(6)= 2\sqrt{6-4} = 2\sqrt{2}

f^\prime (x)=3x^2 \Rightarrow f^\prime (g(6)) = 3[g(6)]^2 \Rightarrow f^\prime \left(2\sqrt{2}\right) = 24

g^\prime(x)= \frac{1}{\sqrt{x-4}} \Rightarrow g^\prime (6) = \frac{1}{\sqrt{2}}

Sendo assim, temos que:

(f\circ g)^\prime(6) = f^\prime(g(6))g^\prime(6) = \frac{24}{\sqrt{2}}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}