• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada e composta]

[Derivada e composta]

Mensagempor Saruka » Sex Nov 11, 2011 18:26

Estou com alguma pressa em saber a resolução de um exercicio que saiu numa frequencia de analise do ano passado na universidade que frequento.

Calcule, usando o Teorema da derivada da funçao composta (fog)' (6)

f(x)={x}^{3} +1\;\;\;\;\;\;g(x)= 2\sqrt[2]{x-4}

O que fiz foi:
3({2\sqrt[2]{x-4}}^{2}) = 3 [4(x-4)] = 12x-48

Chegando à parte em que tenho que fazer a derivada de g empanquei mesmo. Fiz:

[2(\frac{1}{2} * {x-4}^{\frac{-1}{2}} * (x-4)'\:]

Alguem me pode ajudar a entender como se faz a derivada com raiz?
Saruka
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 11, 2011 18:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em engenharia informatica
Andamento: cursando

Re: [Derivada e composta]

Mensagempor Saruka » Sex Nov 11, 2011 18:33

Na parte do
3({2\sqrt[2]{x-4}}^{2}) = 3 [4(x-4)] = 12x-48

o está tudo elevado ao quadrado excepto o 3
Saruka
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 11, 2011 18:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em engenharia informatica
Andamento: cursando

Re: [Derivada e composta]

Mensagempor LuizAquino » Qui Nov 17, 2011 17:18

Saruka escreveu:Calcule, usando o Teorema da derivada da funçao composta (fog)' (6)

f(x)={x}^{3} +1

g(x)= 2\sqrt{x-4}


Saruka escreveu:O que fiz foi:
3\left(2\sqrt{x-4}\right)^{2} = 3 [4(x-4)] = 12x-48

Desde que x-4 > 0, você pode fazer essa simplificação. No caso geral, o correto seria usar módulo:

3\left(2\sqrt{x-4}\right)^{2} = 3 (4|x-4|) = |12x-48|

Saruka escreveu:Chegando à parte em que tenho que fazer a derivada de g empanquei mesmo. Fiz:

2\cdot \frac{1}{2} \cdot \left(x-4\right)^{\frac{-1}{2}} \cdot (x-4)^\prime


Você está no caminho certo. Basta continuar:

2\cdot \frac{1}{2} \cdot \left(x-4\right)^{\frac{-1}{2}} \cdot (x-4)^\prime =

= 1 \cdot \frac{1}{\left(x-4\right)^{\frac{1}{2}}} \cdot 1

= \frac{1}{\sqrt{x-4}}

Observação

Note que você não precisa necessariamente encontrar a expressão para (fog)' (x). Afinal de contas, o exercício pede apenas (fog)' (6).

Utilizando a regra da cadeia, você sabe que (fog)' (x) = f'(g(x))g'(x). Basta então calcular f'(g(6))g'(6).

Note que:

g(6)= 2\sqrt{6-4} = 2\sqrt{2}

f^\prime (x)=3x^2 \Rightarrow f^\prime (g(6)) = 3[g(6)]^2 \Rightarrow f^\prime \left(2\sqrt{2}\right) = 24

g^\prime(x)= \frac{1}{\sqrt{x-4}} \Rightarrow g^\prime (6) = \frac{1}{\sqrt{2}}

Sendo assim, temos que:

(f\circ g)^\prime(6) = f^\prime(g(6))g^\prime(6) = \frac{24}{\sqrt{2}}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.