por Marimar » Seg Nov 07, 2011 13:34
Não sei usar muito bem as fórmulas,
então, achei o exercício que estou com dúvida em uma lista de exercícios na internet
o exercício é 22 da lista:
http://www.icmc.usp.br/~prios/list4calc2.pdfPor favor ajudem!!!
-
Marimar
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Nov 03, 2011 14:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Seg Nov 07, 2011 14:08
Marimar, digite o exercício, é melhor para guardarmos de referência depois.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Marimar » Seg Nov 07, 2011 14:31
O exercício:
Porém acho que vai ficar confuso pra entender, não sei muito bem usar o programa de fórmulas.
Admite que, para todo (x; y);
4y @f(x; y) - x@f (x, y) = 0
@x @y
Prove que f é constante sobre a elipse: x^2 / 4 + y^2 = 1
-
Marimar
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Nov 03, 2011 14:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Seg Nov 07, 2011 14:37
O que você tentou fazer?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Regra da Cadeia
por Cleyson007 » Ter Mai 22, 2012 15:17
- 1 Respostas
- 1689 Exibições
- Última mensagem por joaofonseca

Ter Mai 22, 2012 19:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas- regra da cadeia
por genicleide » Qua Abr 20, 2011 14:28
- 4 Respostas
- 4605 Exibições
- Última mensagem por genicleide

Qua Abr 20, 2011 19:44
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS] Regra da Cadeia
por pauloguerche » Qua Set 07, 2011 17:19
- 4 Respostas
- 3788 Exibições
- Última mensagem por LuizAquino

Qui Set 08, 2011 10:50
Cálculo: Limites, Derivadas e Integrais
-
- ( Regra da Cadeia ) - Cálculo II
por Marimar » Qui Nov 03, 2011 14:38
- 2 Respostas
- 2615 Exibições
- Última mensagem por LuizAquino

Dom Nov 06, 2011 12:32
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo II] Regra da cadeia
por carlosmarinio » Qui Nov 03, 2011 15:15
- 2 Respostas
- 1964 Exibições
- Última mensagem por LuizAquino

Dom Nov 06, 2011 20:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.